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Abstract
Lie algebras a with a complex underlying vector space V are
studied that are automorphic with respect to a given linear
dynamical system on V , i.e., a 1-parameter subgroup Gt ⊂
Aut(a) ⊂ GL(V ). Each automorphic algebra imparts a
Lie algebraic structure to the vector space of trajectories of
the group Gt. The basics of the general structure of auto-
morphic algebras a are described in terms of the eigenspace
decomposition of the operatorM ∈ der(a) that determines
the dynamics. Symmetries encoded by the presence of non-
abelian automorphic algebras are pointed out connected to
conservation laws, spectral relations and root systems. It is
shown that, for a given dynamics Gt, automorphic algebras
can be found via a limit transition in the space of Lie algebras
on V along the trajectories of the group Gt itself. This pro-
cedure generalises thewell-known Inönü-Wigner contraction
and links adjoint representations of automorphic algebras to
isospectral Lax representations on gl(V ). These results can
be applied to physically important symmetry groups and their
representations, including classical and relativistic mechan-
ics, open quantum dynamics and nonlinear evolution equa-
tions. Simple examples are given.

Аннотация
Изучаются алгебры Ли a с комплексным базовым вектор-
ным пространством V , автоморфные относительно задан-
ной линейной динамической системы на V , т. е. 1-пара-
метрической подгруппы Gt ⊂ Aut(a) ⊂ GL(V ). Каж-
дая автоморфная алгебра сообщает Ли-алгебраическую
структуру векторному пространству траекторий группы
Gt. Основы общей структуры автоморфных алгебр a опи-
саны в терминах разложения по собственным подпро-
странствам оператора M ∈ der(a), определяющего ди-
намику. Указаны симметрии, кодируемые наличием неабе-
левых автоморфных алгебр, связанные с законами сохра-
нения, спектральными соотношениями и системами кор-
ней. Показано, что при заданной динамике Gt автоморф-
ные алгебры могут быть найдены посредством предельно-
го перехода в пространстве алгебр Ли на V вдоль траекто-
рий самой группыGt. Эта процедура обобщает известную
контракцию Иненю-Вигнера и связывает присоединенные
представления автоморфных алгебр с изоспектральными
представлениями Лакса на gl(V ). Полученные результа-
ты можно применить к физически важным группам сим-
метрии и их представлениям, включая классическую и ре-
лятивистскую механику, открытую квантовую динамику
и нелинейные эволюционные уравнения. Приведены про-
стые примеры.
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Introduction

Lie groups and Lie algebras are a powerful mathematical
tool that has a variety of physical applications. The local prop-
erties of a Lie group are described in terms of its Lie algebra.
Lie algebras have also applications, fully separate from Lie
groups. This makes the theory of Lie algebras independently
useful. Finite-dimensional complex and real semisimple Lie
algebras and their representations are fully classified [1–3].

The modern theory of Lie algebras mostly concerns infi-
nite-dimensional generalisations (with links to modern prob-
lems of theoretical physics [4]) and geometric extensions
(with links to algebraic groups and algebraic topology [5,

6]). Automorphisms of Lie algebras (and adjacent algebraic
structures) describe the algebra symmetries and so play an
important role in the theory. Normally, the direct problem
is tackled, i.e., the problem of finding the group of automor-
phisms of a given Lie algebra. We address here the inverse
problem — the problem of description of Lie algebras that
have a given group of automorphisms.

The inverse problem is quite useful and intricate as well,
even in the finite-dimensional case. For instance, 1-parame-
ter subgroups of automorphisms of the algebra are equivalent
to linear dynamical systems on the underlying vector space.
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These dynamical systems should possess certain symmetries
for the algebra to have a non-abelian structure. Hence, there
is a close link between algebras, automorphic under the dy-
namics, and symmetries of dynamical systems. Linear dy-
namical systems find many physical applications. They form
the basis of such an important field as quantum mechanics
and underly the modern methods of integration of nonlinear
dynamical systems.

In these notes, we study the general properties of Lie al-
gebras that have a given linear dynamical system as its 1-
parameter group of automorphisms. We call such algebras
automorphic algebras of the dynamics. We study symmetries
of the dynamics encoded by non-abelian automorphic alge-
bras and their description in terms of a special limit transi-
tion in the space of Lie algebras along the dynamical trajec-
tories. The latter relates automorphic algebras to the well-
known Inönü-Wigner contraction and isospectral Lax repre-
sentations. We give a few simple examples related to appli-
cations of this theory to classical matrix groups and nonlin-
ear evolution equations. These connections make automor-
phic algebras a worth developing mathematical tool, useful
in the theory of both dynamical systems and Lie algebras.

We assume that the reader is familiar with the basics of
the Lie algebraic and group theory, for example, within the
classical books [1–3].

1. Automorphic algebras and symmetries
Let V be a finite-dimensional complex vector space. Let

a dynamic system Gt be given on V as a smooth 1-parame-
ter group of linear transformations. In other words, Gt is a
smooth representation of the additive group of real numbers
on V :

Gt : R → GL(V ), GtGs = Gt+s,

G0 = id, G−1
t = G−t.

The exponential map

Gt = etM , M =
d

dt
Gt

∣∣∣
t=0

identifies the trajectories

{x(t) = Gtx(0)} ⊂ V

with the solutions to the linear differential equation

ẋ = Mx, x ∈ V, (1)

to whichGt is a fundamental matrix. Note thatGt is always
a subgroup of the general linear Lie group GL(V ) (of all
transformations/automorphisms of V ) and the operator M
belongs to its Lie algebra gl(V ) (of all endomorphisms of V ).
The groupGt can be a 1-parameter subgroup of a smaller Lie
group withinGL(V ), and thenM belongs to the relevant Lie
algebra. Note also that the parameter t does not have to play
the role of the time in the usual physical sense, but can be a
more general evolution variable.

We additionally assume that the vector space V is
equipped with a Lie algebraic structure with the bracket [, ]
that satisfies the standard conditions of bilinearity, skew-

symmetricity and the Jacobi identity. We denote the corre-
sponding Lie algebra as a.

In this work we study the case where the group Gt acts
on the algebra a as a 1-parameter group of automorphisms,
Gt ∈ Aut(a):

Gt[x, y] = [Gtx,Gty] ∀x, y ∈ a. (2)

We call algebra a automorphic algebra of the dynamical sys-
temGt. By differentiation with respect to t, Eq. (2) is equiva-
lent to the condition that the operatorM is a derivation of a,
M ∈ der(a):

M [x, y] = [Mx, y] + [x,My] ∀x, y ∈ a. (3)

Any dynamical system Gt is uniquely defined by its op-
eratorM . Hence, Eqs. (2), (3) identify all dynamical systems
that have the same automorphic algebra a with the Lie alge-
bra der(a) of all derivations of a. The groups Gt span then
the identity component Aut(a)0 of the group Aut(a) of all
automorphisms of a. The group Aut(a) is a Lie group with
the Lie algebra der(a). Due to the Jacobi identity, the alge-
bra der(a) has a subalgebra (in fact, an ideal) ider(a) of in-
ner derivations written via the adjoint representation of a as
M = ad(y) = [y, ·], y ∈ a. Each inner derivation gen-
erates a dynamical system Gt that belongs to the group of
inner automorphisms Inn(a) ⊆ Aut(a)0. The correspond-
ing Eq. (1) is of the form ẋ = [y, x]. For matrix/operator
algebras this form corresponds to Lax equations. The latter
are an important tool in the theory of nonlinear integrable
systems and quantum mechanics [7–10]. We will encounter
Lax equations again later when we consider semisimple au-
tomorphic subalgebras and limit transitions along the group
trajectories. Note that the semisimple and nilpotent parts (in
the sense of the Jordan decomposition) of any derivationM
are also derivations of the same Lie algebra [2, 11].

A given dynamical system can havemany automorphic al-
gebras, not isomorphic to each other. For example, abelian
algebras are automorphic for any dynamical system. Each
automorphic algebra has the same 1-parameter group Gt

of its automorphisms. Below we describe the basic general
properties of automorphic algebras (i.e., the properties com-
mon for all automorphic algebras) of a given dynamical sys-
tem and show that they encode an important information on
its symmetries.

By an immediate observation, we come to the following
consequence of Eq. (3) and the bilinearity of the bracket [, ].

Proposition 1. For any automorphic algebra, the bracket
of any two solutions to Eq. (1) is again a solution to Eq. (1),

ẋ = Mx, ẏ = My −→ d

dt
[x, y] = M [x, y]. (4)

In terms of Proposition 1, automorphic algebras impart an
algebraic structure to the vector space of solutions to Eq. (1)
(trajectories of the group Gt). Non-abelian automorphic al-
gebras enable new solutions to Eq. (1) to be generated from
known solutions that generically are not linear combinations
of the latter.

It follows from the definition that any subalgebra a0 of
an automorphic algebra a that is invariant under the dynam-
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ics,Ma0 ⊆ a0, is an automorphic algebra of the restriction
Gt

∣∣
a0
. Eq. (3) and the classical results of Refs. [12, 13] imme-

diately imply the following statement.
Proposition 2. For any automorphic algebra a, its center,

its derived algebra, its radical and its nilradical are invariant
under the dynamics,

Mz(a) ⊆ z(a), M [a, a] ⊆ [a, a],

Mrad(a) ⊆ rad(a), Mnil(a) ⊆ nil(a),
(5)

and so are automorphic subalgebras of a.
In fact, those all are ideals of a that are characteristic ide-

als, i.e., ideals invariant under any derivationM [12, 13]. The
following embeddings take place z ⊆ nil ⊆ rad. In terms of
Proposition 2, automorphic algebras enable to reduce the so-
lutions to Eq. (1) into smaller invariant subspaces, giving the
space of solutions additional structural properties.

More automorphic subalgebras can be constructed and
the further analysis can be carried out in terms of the
eigenspaces of the operatorM , as shown below.

Let E be the set of (distinct) eigenvalues λ of the operator
M and µλ denote the algebraic multiplicity of λ. Consider
the decomposition of the vector space V into (generalised)
eigenspaces ofM

V =
⊕
λ∈E

Vλ, Vλ = {x ∈ V : (λ−M)µλx = 0}. (6)

Eqs. (3), (6) imply the following classical result proved in
Ref. [11].

Proposition 3. Any automorphic algebra admits the graded
structure

∀λ, η ∈ E [Vλ, Vη] ⊆ Vλ+η, (7)

where we assume Vξ = 0 if ξ ̸∈ E .
Multiplication of the operatorM by any nonzero complex

number c = |c|eiθ homogeneously dilates and simultane-
ously rotates all the eigenvalues of M with respect to the
origin on the complex plane. This however does not change
automorphic algebras. Hence, the theory of automorphic al-
gebras is invariant under the group of homotheties and rota-
tions of the complex plane of eigenvalues with respect to the
origin (the latter is a subgroup of the Möbius group of confor-
mal transformations of the complex plane). In particular, it
follows from Eq. (7) that, for any line that crosses the origin
on the complex plane, the sets of eigenvalues that belong to
this line, lie on one side of the line and lie on the opposite side
of the line generate subalgebras of any automorphic algebra.

Further, we distinguish two qualitatively different situa-
tions, namely the cases where the operator M is non-de-
generate, 0 ̸∈ E , and where it is degenerate, 0 ∈ E . The
non-degeneracy/degeneracy ofM is equivalent to the non-
existence/existence of non-trivial conservation laws (“inte-
grals of motion”), i.e., non-zero elements x ∈ V such that
Mx = 0,Gtx = x ∀t.

The classical result proved in Ref. [14] implies that in the
non-degenerate case all automorphic algebras are nilpotent.
This is a consequence of Eq. (7) and the fact that the condition

detM ̸= 0 implies the nilpotence of all adjoint representa-
tions ad(Vλ) and so (by a generalised Engel’s theorem) the
nilpotence of a [14].

Proposition 4. If 0 ̸∈ E then all automorphic algebras are
nilpotent.

Corrollary. The existence of non-nilpotent automorphic
algebras implies the existence of nontrivial conservation
laws.

A more detailed structure of nilpotent automorphic alge-
bras in the non-degenerate case can be enlightened within
the following definition.

Definition 1. An eigenvalue λ ∈ E is called resonant if
λ + η − ξ = 0 for some η, ξ ∈ E . Otherwise, λ is called
non-resonant.

Proposition 5. For any automorphic algebra a, if λ is non-
resonant then the relevant eigenspace belongs to the centre
of a, Vλ ⊆ z(a). If all eigenvalues are non-resonant then all
automorphic algebras are abelian.

Proof. Let λ be non-resonant. Then λ + η − ξ ̸= 0 for
all η, ξ ∈ E . By Eq. (7), this implies [Vλ, Vη] = 0 for all
η ∈ E , as λ + η cannot be an eigenvalue. Then, for any au-
tomorphic algebra a, we obtain [Vλ, a] = 0, i.e., Vλ ⊆ z(a).
If all eigenvalues are non-resonant then all eigenspaces Vλ

belong to the centre and a is abelian. □
Since Vλ is invariant under Gt, it is an automorphic

abelian subalgebra of a for any non-resonant λ.
A simple example of applicability of Proposition 5 is the

case where Gt is a 1-parameter subgroup of an irreducible
representation of the (complexified) group SO(3) on V . The
group SO(3) of the rotations of the Eucledian 3-space is an
important group in physics, closely connected, for example, to
the special unitary and special linear groups SU(2), SL(2)
as well as the Möbius group of conformal transformations of
the complex plane. In this case, any operatorM is the rele-
vant representation of an element of the algebra so(3). The
latter can be treated as the algebra of quantum angular mo-
mentum operators [15]. Then there exists a basis of V such
that

M = α diag (−S, −S + 1, . . . , S − 1, S), (8)

where α is some complex number, S is a positive integer or
half-integer spin number that characterises the dimension of
the representation, dimV = 2S+1. For even-dimensional
vector spaces V , the spin number S is half-integer corre-
sponding to fermionic representations. For odd-dimensional
V , the spin number S is integer and corresponds to bosonic
representations. For fermionic representations, since S is
half-integer, assuming α ̸= 0, it follows from Eq. (8) that
the operator M is non-degenerate and the sum of any two
eigenvalues of M is not an eigenvalue, i.e., by Definition 1,
all eigenvalues are non-resonant. By Proposition 5, all auto-
morphic algebras of any (nontrivial) dynamics generated by
fermionic representations of so(3) are abelian. We will re-
turn to this example later when we consider the bosonic case.

In terms of Proposition 5, for the existence of non-abelian
automorphic algebras it is necessary that the resonance con-
dition λ + η − ξ = 0 is satisfied for some λ, η, ξ ∈ E . In
the non-degenerate case, it means that the operatorM has
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at least two distinct eigenvalues. Since 2-dimensional non-
abelian algebras are non-nilpotent, we obtain then dim a =
dimV ⩾ 3. The minimal example is the 3-dimensional
Heisenberg algebra h3

[vλ, vη] = vξ, [vξ, vλ] = [vξ, vη] = 0.

Here λ, η are resonant and ξ is non-resonant, so
span {vξ} = z and the centre is invariant under M in
accordance with Proposition 2.

Nilpotent algebras are constructed as successive central
extensions of abelian algebras, so any nilpotent algebra al-
ways has a nontrivial centre. Nilpotent algebras are solvable.
All subalgebras and homomorphic images of nilpotent alge-
bras are nilpotent. The Killing form on nilpotent algebras is
zero. The adjoint representations of nilpotent algebras con-
sist of nilpotent operators. Nilpotent algebras have outer au-
tomorphisms and outer derivations. So far, no general ap-
proach has been found to classification of nilpotent Lie alge-
bras.

Let us now assume 0 ∈ E , i.e.,M is a degenerate opera-
tor, detM = 0. In this case, we can write λ + 0 − λ = 0,
so, by Definition 1, all eigenvalues λ of the operator M are
resonant. Eq. (7) immediately implies the following result.

Proposition 6. If 0 ∈ E then the subspace V0 is a
nonzero subalgebra of any automorphic algebra that contains
a nonzero subalgebra V̄0 = {x ∈ V0 : Mx = 0} of conser-
vation laws. The adjoint representation of the subalgebra V̄0

acts on the space of solutions to Eq. (1): for any solution y(t)
to Eq. (1) within any automorphic algebra, the linear transfor-
mation

y′(t) = ad(x)y(t) = [x, y(t)], x ∈ V̄0, (9)

gives again a solution to Eq. (1).
Since V0, V̄0 are invariant under Gt, they are automor-

phic subalgebras. The operatorM is nilpotent on V0, so the
restrictionGt

∣∣
V0
is polynomial in t. Eq. (9) is a partial case of

Eq. (4) that shows that, besides their conservative character,
within automorphic algebras, nontrivial conservation laws of
Eq. (1) play an important role in the structure of solutions.

To extend the result for the non-degenerate case to the
degenerate case, it is natural to consider automorphic alge-
bras as extensions of algebras that contain V0 by nilpotent
ideals. This can be done as follows.

Definition 2. The set E of eigenvalues of the operatorM
is called split if E = E0 ∪ Ē with the properties:

i) E0 ∩ Ē = ∅;
ii) 0 ∈ E0;
iii) Ē ̸= ∅;
iv) for any λ0, η0 ∈ E0, λ̄, η̄ ∈ Ē

either λ0 + η0 ̸∈ E or λ0 + η0 ∈ E0,

either λ̄+ η̄ ̸∈ E or λ̄+ η̄ ∈ Ē ,

either λ0 + λ̄ ̸∈ E or λ0 + λ̄ ∈ Ē .
(10)

Proposition 7. If the set E is split then any automorphic

algebra is a semidirect sum

a = a0 + ā,

a0 =
⊕
λ∈E0

Vλ, ā =
⊕
λ∈Ē

Vλ,

where a0 ⊇ V0 is a subalgebra and ā is a nilpotent ideal.
Proof. Indeed, by Eqs. (7), (10), we have

[a0, a0] ⊆ a0, [ā, ā] ⊆ ā, [a0, ā] ⊆ ā.

Hence, a0 is a subalgebra and ā is an ideal of any automor-
phic algebra. We have 0 ∈ E0, so V0 is a subalgebra of a0.
Since 0 ̸∈ Ē , by Proposition 4, the ideal ā is nilpotent, as
it is invariant under the operator M (forming then an auto-
morphic subalgebra) where this operator is non-degenerate.
The subalgebra a0 acts on ā by derivations, so the short exact
sequence

ā −→ a −→ a0

defines a split extension of a0, i.e., the semidirect sum a =
a0 + ā. □

In terms of Proposition 7, both a0, ā are invariant un-
der the dynamics and so a0, ā are automorphic subalgebras.
Proposition 5 can be applied then to the ideal ā in terms of
Definition 1 and the set Ē — to specify the centre of ā. If sev-
eral splittings of E exist, from the point of view of the Levi
decomposition, in Proposition 7 the splitting with the minimal
possible subset E0 should be chosen.

Since ā ̸= 0, under the condition of Proposition 7, all au-
tomorphic algebras are non-semisimple. The important case
where Proposition 7 is directly applicable is the semidissipa-
tive case

∀λ ∈ E Reλ ⩽ 0, ∃η ∈ E Re η < 0. (11)

In this case, the set E is split into the subsets (remind 0 ∈ E0)

E0 = {λ ∈ E : Reλ = 0}, Ē = {λ ∈ E : Reλ < 0}.

This gives for any automorphic algebra the following semidi-
rect sum of a subalgebra and a nilpotent ideal

a = a0 + ā,

a0 =
⊕

Reλ=0

Vλ, ā =
⊕

Reλ<0

Vλ.
(12)

Due to the invariance under rotations of eigenvalues with re-
spect to the origin (see the comments after Proposition 3), the
same situation occurs where the eigenvalues of the operator
M are split into eigenvalues that belong to one side of a line
that crosses the origin and eigenvalues that belong to this
line.

We aim now to describe the situations where there exist
non-solvable automorphic algebras, i.e., automorphic alge-
bras with semisimple subalgebras. This is closely connected
to projections of root systems of semisimple Lie algebras to
the complex plane of eigenvalues of the operatorM . The root
systems of semisimple complex Lie algebras are fully classi-
fied [1–3].
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Definition 3. A set of complex numbers ρ(g) ⊂ C is
called a root projection for a complex semisimple Lie alge-
bra g if there exists an element m ∈ h of a maximal toral
subalgebra h ⊂ g such that ρ(g) = {α(m) : α ∈ Φ}
where Φ ⊂ h∗ is the set of roots of g corresponding to h.

Proposition 8. Let a root projection of a semisimple com-
plex Lie algebra g exist such that ρ(g) ⊂ E . Let µ′

λ ⩾ µ̄λ

if 0 ̸= λ ∈ ρ(g). Let µ′
0 ⩾ r + µ̄0 if 0 ∈ ρ(g) where

r = rank g. Here µ′
λ is the geometric multiplicity of λ in

E and µ̄λ is the multiplicity of λ in ρ(g). Then there exists
an automorphic algebra a with a semisimple subalgebra a0
isomorphic to g.

Proof. Consider the vector space

a0 = V̄0 ⊕
⊕

λ∈ρ(g)

V̄λ,

V̄0 =

r⊕
k=1

v
(k)
0 ⊆ V0, V̄λ =

µ̄λ⊕
q=1

v
(q)
λ ⊆ Vλ,

where v(k)0 , v(q)λ are eigenvectors of the operatorM corre-
sponding respectively to the eigenvalues 0 andλ. Such eigen-
vectors exist by the conditions imposed on the multiplicities
of the eigenvalues. By Eq. (7) and the root space decompo-
sition of g, the vector space a0 is a semisimple automorphic
subalgebra of an automorphic algebra a with the restriction
M0 ≡ M

∣∣
a0

= ad(m). To get an automorphic algebra
a on the full space V , it is sufficient to consider the triv-
ial extension of the subalgebra a0 by the abelian subalgebra
h = V \ a0. □

In terms of Proposition 8, the semisimple subalgebra a0
is invariant under the dynamics, so it is an automorphic sub-
algebra. The set ρ(g) is centrally symmetric with respect to
the origin on the complex plane. This implies TrM0 = 0.
Hence, for the restrictionG0

t = Gt

∣∣
a0
we obtain detG0

t =

exp(tTrM0) = 1 ∀t and G0
t belongs then to the special

linear Lie group SL(a0). As a result, G0
t preserves the vol-

ume and orientation of the vector space a0. Note also that the
restrictionM0 is always a semisimple operator and an inner
derivation of a0. The restriction of Eq. (1) on a0 is of the Lax
type ẋ = [m,x].

The simplest example of applicability of Proposition 8 is
the case 0, ±α ∈ E with an arbitrary complex number α.
In this case, there exists an automorphic subalgebra isomor-
phic to A1 = sl(2) = so(3). For instance, getting back to
Eq. (8), this situation is realised for bosonic representations
of the algebra so(3) where the spin number S is integer and
so any operatorM has the eigenvalues 0, ±α. By Proposi-
tion 8, unlike the case of fermionic representations where all
automorphic algebras are abelian (see the comments after
Proposition 5), any dynamics generated by bosonic represen-
tations of so(3) has an automorphic subalgebra isomorphic
to so(3) and so has a non-solvable automorphic algebra. By
Propositions 5 and 8, a strict algebraic difference exists be-
tween fermions and bosons in terms of automorphic algebras.

The situation is somewhat similar in the case whereGt ⊂
SO(N). For the even series of the orthogonal groupsDn =
SO(2n) andM ̸= 0 all automorphic algebras are nilpotent,

while for the odd series Bn = SO(2n + 1) automorphic
subalgebras exist, isomorphic to sl(2).

The lowest-dimensional bosonic caseS = 1 corresponds
to the standard 3-dimensional representation of so(3). In
this case, as a consequence of the fact {0, ±α} = E and
Eq. (7), the dynamics Gt generated by any operatorM from
this representation (plane uniform rotations around a fixed
coordinate line) has three non-abelian automorphic algebras
that are not isomorphic to each other:

so(3) = sl(2) : [v0, v±] = ±v±, [v+, v−] = v0,

h3 : [v0, v±] = 0, [v+, v−] = v0,

e(2) : [v0, v±] = ±v±, [v+, v−] = 0.

Here v0, v± are the eigenvectors ofM corresponding to the
eigenvalues 0, ±α. These algebras are respectively simple
(so(3)), nilpotent (the Heisenberg algebra h3) and non-nilpo-
tent solvable (the Euclidean algebra e(2)).

At the end of this section, we point out that the spectral
problem (6) for the operatorM on V generates a symmetric
spectral problem for the operator ad(M) on gl(V ) in terms
of the adjoint representations of automorphic algebras.

Proposition 9. For any automorphic algebra a, for each
λ ∈ E and each v ∈ Vλ, the adjoint representation ad(v) of
the element v ∈ a satisfies the spectral problem

(λ− ad(M))µλad(v) = 0. (13)

Proof. Indeed, in terms of the operators ad(x) = [x, ·],
Eq. (3) is written as

ad(Mx)− [M, ad(x)] = ad(Mx)− ad(M)ad(x) = 0.

For v ∈ Vλ, we have (λ−M)µλv = 0. Utilizing the Jordan
form ofM on Vλ, we can choose a basis {v1, . . . , vµλ

} in
Vλ such that

Mvk = λvk +
k−1∑
s=1

cksvs, k = 1, . . . , µλ

for some complex constants cks. This implies

ad(Mvk) = λ ad(vk) +
k−1∑
s=1

cksad(vs)

and we come to the fact that the operators ad(vk) all satisfy
Eq. (13). Precisely,

(λ− ad(M))kad(vk) = 0, k = 1, . . . , µλ. □

In terms of decomposition (6) and Proposition 9, if the op-
eratorM is semisimple on Vλ then cks = 0 and both spec-
tral problems (6), (13) are split on Vλ:

(λ−M)vk = 0, (λ− ad(M))ad(vk) = 0. (14)

We have M, ad(vk) ∈ der(a) ⊂ gl(V ), so Proposition 9
and Eqs. (13), (14) reduce the procedure of finding automor-
phic algebras to the usual linear algebra.

Известия Коми научного центра УрО РАН, серия «Физико-математические науки» № 5 (57), 2022
www.izvestia.komisc.ru 9



2. Automorphic algebras and generalised
Inönü-Wigner contractions
In this section we show that automorphic algebras of a

given dynamical systemGt can be produced from non-auto-
morphic algebras by a special limit transition along the tra-
jectories of Gt. This limit procedure generalises the well-
known Inönü-Wigner contraction [16] that finds a variety of
physical applications [10, 17–23].

Let an algebra Lie a with a bracket [, ] (generically non-
automorphic for Gt) be given on the vector space V . Con-
sider the bilinear operation on V

[x, y]t = G−t[Gtx,Gty], t ∈ R, x, y ∈ V. (15)

For all t, the bracket [, ]t inherits the bilinearity, skew-sym-
metricity and Jacobi identity of the bracket [, ] of the algebra
a. Hence, each bracket [, ]t defines a Lie algebra at on V .

Proposition 10. Let for all x, y ∈ V there exist the finite
limit (in the standard topology of the vector space V = Cn)

[x, y]′ = lim
t→+∞

[x, y]t. (16)

Then the limit algebra a′ with the bracket [, ]′ is automorphic
forGt.

Proof. By differentiation of Eq. (15) with respect to t, we
get for all t, x, y

d

dt
[x, y]t = −M [x, y]t + [Mx, y]t + [x,My]t. (17)

The existence of the finite limit (16) implies both left-hand and
right-hand sides of Eq. (17) to vanish at t → +∞. The op-
erator M becomes a derivation of the limit algebra a′. The
latter is then automorphic for the dynamical systemGt. □

Due to the relation [Gtx,Gty] = Gt[x, y]t, for each fi-
nite t, the intermediate algebra at is isomorphic to a. If a is
automorphic forGt then [x, y]t = [x, y] is independent of t
and the intermediate algebras at and the limiting algebra a′
all coincide with a. Otherwise, the limit a′ is a Lie algebra that
is (in general) not isomorphic to a, although a and a′ have the
same underlying vector space V .

In terms of the decomposition (6) into eigenspaces ofM ,
for the limit of Eq. (16) to exist, it is sufficient to generalise the
graded structure of Eq. (7) to

[Vλ, Vη] ⊂
⊕

Vξ,

ξ = λ+ η or Re ξ > Reλ+Re η.
(18)

The limit (16) transforms the grading (18) to the grading (7).
The limit transition (15), (16) enables to describe automor-

phic algebras of a dynamical system Gt in a self-consistent
way, as limit cases of any algebras, satisfying Eq. (18), along
the trajectories of the groupGt itself. Similarly to Eq. (16), we
can consider the limit

[x, y]′− = lim
t→−∞

[x, y]t. (19)

Provided the latter exists, we again come to a new Lie alge-
bra a′− that is automorphic forGt. The two limits (16), (19) are

mutually connected by inversion of the signs of the eigenval-
ues of M . If both limits (16), (19) simultaneously exist then
a′ = a′−.

For semidissipative dynamical systems (11), the procedure
(15), (16) is equivalent to the Inönü-Wigner contraction. In this
case, the vector spaceV shrinks (contracts) along the trajec-
tories of Gt. As per Proposition 7 and Eq. (12), limit algebras
of the Inönü-Wigner contraction are always non-semisimple.
They are split extensions of the subalgebra a0 spanned by the
eigenspaces ofM corresponding to purely imaginary eigen-
values by the nilpotent ideal ā spanned by the eigenspaces
ofM corresponding to eigenvalues with negative real parts.
The restriction of Eq. (15) onto a0 is either compact for all t
or has terms that polynomially grow with t, so for the limit
(16) to exist, the bracket [x, y]t should be independent of t for
x, y ∈ a0. Then the limit algebra keeps the initial bracket on
a0. As a result, there exists the homomorphism

G′ : a′ → a, kerG′ = ā, fixG′ = a0 (20)

that realises the aforementioned split extension (the short ex-
act sequence)

ā −→ a′ −→ a0.

For example, in the original setting [16, 17], the Inönü-
Wigner contraction corresponds to the case

Mx = 0, My = λy, Reλ < 0,

Gtx = x, Gty = eλty, x ∈ a0, y ∈ h,
(21)

where a0 ⊂ a is a subalgebra, h is the complementary sub-
space. In the limit t → +∞, according to Eqs. (15), (16), (18),
we come to the new Lie bracket on V that keeps a0 as a sub-
algebra and makes h an abelian ideal,

[a0, a0]
′ = [a0, a0] ⊆ a0,

[a0, h]
′ ⊆ h, [h, h]′ = 0.

(22)

Eqs. (15), (16) generalise the Inönü-Wigner procedure to
any, not only semidissipative dynamics satisfying Eq. (18). Un-
like Eq. (20), we do not require the limit algebra to be a split
extension of a nonzero algebra. The limit algebra a′ can be
semisimple in certain cases where the initial algebra a is
semisimple.

To give a simple example, qualitatively different from
Eqs. (21), (22), consider the 3-dimensional algebra a spanned
by vectors v−, v0, v+ with

Mvξ = ξλvξ, ξ = −, 0, +, Reλ > 0,

[v−, v0] = 2v− + αv0 + βv+,

[v+, v−] = v0 + αv+, [v0, v+] = 2v+,

(23)

where α, β are arbitrary complex numbers. The bracket [, ]
satisfies the Jacobi identity and so defines a Lie algebra. Tak-
ing the limit (16), we come to the new bracket

[v−, v0]
′ = 2v−, [v+, v−]

′ = v0,

[v0, v+]
′ = 2v+

(24)

that is the bracket of the algebra a′ = sl(2) that is a simple
Lie algebra. The aforedefined operator M is a derivation of
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the new algebra, so a′ is automorphic forGt. This is however
not the case for the initial algebra a unless α = β = 0.

This example illustrates also Proposition 8. Here M =
ad(λv0/2) (v0 spans the maximal toral subalgebra) with the
eigenvalue 0 and the two non-zero eigenvalues ±λ gener-
ated by the set of roots for sl(2).

In the example (23), (24), the limit algebra a′ = sl(2) is
isomorphic to the initial one a. Examples of non-dissipative
dynamics generating non-isomorphic limit algebras also can
be easily given. For example, it is sufficient to modify Eq. (23)
as

Mvξ = λξvξ, ξ = −, 0, +,

λ0 = 0, Reλ+ > 0,

Reλ− < −Reλ+ < 0,

[v−, v0] = 2v− + αv0 + βv+,

[v+, v−] = v0 + αv+, [v0, v+] = 2v+.

(25)

After the limit (16), we obtain

[v−, v0]
′ = 2v−, [v+, v−]

′ = 0,

[v0, v+]
′ = 2v+.

(26)

The operator M is a derivation of a′, so the limit algebra is
indeed automorphic. Here the initial algebra is isomorphic to
sl(2) while the limit algebra (isomorphic to the Lie algebra
e(2) of the Euclidean group E(2)) is solvable and so non-
isomorphic to sl(2).

Example (25), (26) also illustrates Proposition 7. Choosing
E0 = {0}, Ē = {λ+, λ−}, we see that the set E is split.
Hence, indeed, the subspace ā = span (v−, v+) is a nilpo-
tent (abelian in this case) ideal in a′. This subspace coincides
with the derived algebra, ā = [a′, a′]. This illustrates Propo-
sition 2, as ā is indeed invariant underGt. In accordance with
Propositions 6, 7, the 1-dimensional subspace spanned by v0
is a subalgebra that contains conservation laws.

As the final result of this study, we point out that the spec-
tral problem (14) for semisimple operatorsM can be linked to
the limit procedure (15), (16) via a Lax representation in gl(V ).
In fact, in terms of the adjoint representation adt(vλ) in the
intermediate algebras at, Eq. (17) is recast as

d

dt
adt(vλ) = (λ− ad(M))adt(vλ). (27)

We used the fact thatM is semisimple, so the eigenspace Vλ

is split into a set of eigenvectors vλ, thus splitting the spectral
problem (13) into Eq. (14). Eq. (27) easily implies the following
result.

Proposition 11. The operator

Lλ(t) = e−λtadt(vλ) ∈ gl(V ) (28)

satisfies the isospectral Lax representation

d

dt
Lλ(t) = [Lλ(t),M ]. (29)

In particular, the eigenvalues of Lλ(t) and analytical func-
tions of them are conservation laws of Eq. (29).

In terms of proposition 11, the limit (15), (16) is equivalent
to the limit along the trajectories of Eq. (27)

ad0(vλ) → ad′(vλ), t → +∞,

where ad0(vλ), ad′(vλ) are the adjoint representations in
the initial and the limit algebras a, a′. The trajectories are
found by the transformation (28) and the Lax representation
of Eq. (29). It is worth mentioning that the adjoint represen-
tations adt(v0) corresponding to conservation laws of Eq. (1)
directly satisfy the Lax representation of Eq. (29) without the
transformation of Eq. (28). Proposition 11 implies the following
statement.

Proposition 12. Let the finite limit (15), (16) exist. Then, for
Reλ ⩾ 0, λ ̸= 0, the operators adt(vλ) are nilpotent for
all t. For Reλ < 0 the limit operator ad′(vλ) is nilpotent.
The eigenvalues of the operator adt(v0) that corresponds to
λ = 0 (and so all their analytical functions) are conservation
laws of Eqs. (27), (29).

Proof. By Proposition 11, the eigenvalues of the opera-
tor Lλ(t) of Eq. (28) are conservation laws of Eq. (29). Then
any eigenvalue αt(λ) of the operator adt(vλ) has the form
αt(λ) = eλtα0(λ), where α0(λ) is an eigenvalue of the
operator ad0(vλ) of the initial algebra. Hence, if Reλ ⩾ 0,
λ ̸= 0, for the limit (15), (16) to exist, it is necessary α0(λ) =
0, so αt(λ) = 0 for all t, i.e., adt(vλ) should be nilpotent
for all t. If Reλ < 0 then αt(λ) → 0, t → +∞, i.e.,
the limit operator ad′(vλ) is nilpotent. For λ = 0, we have
L0(t) = adt(v0), so the eigenvalues of adt(v0) are con-
servation laws of Eqs. (27), (29). □

It follows from Proposition 12 that, for any λ ̸= 0, the ad-
joint representation ad′(vλ) in the limit algebra a′ is a nilpo-
tent operator. In fact, it follows from Eq. (7) that, for any au-
tomorphic algebra, for all v ∈ Vλ with λ ̸= 0, the operator
ad(v) is nilpotent (the condition of semisimplicity ofM can
be lifted). Remarkably, the conservation laws v0 of Eq. (1)
on automorphic algebras on V generate conservation laws
Tr [adt(v0)

m] of Eq. (29) on the algebra gl(V ).
Propositions 10-12 along with Proposition 9 illustrate the

remarkable algebraic role of the limit procedure (15), (16) for
description of adjoint representations of automorphic alge-
bras.

Conclusion
Automorphic Lie algebras of linear dynamical systems

have been introduced as Lie algebraic structures on the space
of their trajectories. We have formulated the basic general
properties of automorphic Lie algebras of a given dynami-
cal system in terms of the eigenspace decomposition of the
dynamics. We have pointed out the symmetries that are en-
coded by the presence of non-abelian automorphic algebras.
In particular, non-nilpotent automorphic algebras are related
to conservation laws of the dynamics. In the presence of a
semisimple automorphic subalgebra, there is a natural corre-
spondence between the set of roots related to the subalgebra
to the set of eigenvalues of the dynamical system. We have
shown that automorphic algebras can be found by a limit tran-
sition along the trajectories of the dynamics, a procedure that
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generalises the well-known Inönü-Wigner contraction. We
have demonstrated that, in terms of the adjoint representa-
tion, the limit transition is naturally reduced to an isospectral
Lax representation. We have given simple examples related
to applications of the developed theory to classical matrix
groups. This suggests that automorphic algebras are worth
developing tool in the theory of both dynamical systems and
Lie algebras.

Inönü-Wigner contractions, in the dynamical setting of
Eqs. (15), (16), have been applied before to dissipative dynam-
ical systems [20, 22, 23]. Other dynamical deformations of Lie
algebras, both related and unrelated to Inönü-Wigner con-
tractions, have also been discussed [24, 25]. We are unaware
of whether the automorphic character of limit algebras has
ever been noticed. We are also unaware of an earlier use of
non-dissipative dynamical systems for constructing non-iso-
morphic algebras on the same vector space. As far as we
know, the link of the limit transition of the Inönü-Wigner type
to the Lax representations has not been made before.

As direct physical applications of the methodology devel-
oped in this work, we would expect first of all cases where
the groups Gt have additional special properties: for exam-
ple, belong to various physically important symmetry groups
and their representations. Among them, we can find classi-
cal and relativistic mechanics (the classical matrix groups,
the Galilean, Lorentz and Poincaré groups [26]) and quan-
tum applications such as, for example, Lindblad equations of
open quantum dynamics (completely positive quantum semi-
groups [27]). Considering finite and discrete groups that gen-
erate discrete dynamical systems would be curious as well
(for example, within the theory of Ref. [5]).

It would be interesting, to our mind, to consider also in-
finite-dimensional underlying vector spaces V , especially
functional spaces, or finite-dimensional Lie algebras over
functional rings. In the latter cases, it might be expected that
the linear systems (1), the graded structures (7) and the Lax
representations (29) are related to some integrable nonlinear
evolution equations of mathematical physics [7–10]. Accord-
ing to Proposition 4, for an open set of dynamical systems, all
automorphic algebras are nilpotent. Nilpotent algebras play
an important role in the representation theory, especially in
the orbit method and geometric quantisation [28]. It would be
curious to build links of these modern theories to the theory
of automorphic algebras we developed.

Some of the results we obtained can be reformulated for
arbitrary (not necessarily Lie) algebras, making this subject
useful in a wider algebraic context.

To give one simple example in relation to the last two
paragraphs, consider the vector space V of smooth complex
functions x : Ξ → C given on a smooth real manifold Ξ of
a dimension n with (local) coordinates ξ = (ξ1, . . . , ξn).
Let a smooth vector field F (ξ) = (F1(ξ), . . . , Fn(ξ)) be
given on Ξ and let Eq. (1) be generated by the operatorM of
differentiation along the field F :

ẋ = Mx ≡ ⟨F,∇x⟩ =
n∑

k=1

Fk
∂x

∂ξk
. (30)

Then the solutions x(t, ξ) are given by evolution of the initial
value x(0, ξ) = x0(ξ) along the flow on Ξ generated by the
vector field F : x(t, ξ) = x0(η(t, ξ)) where

η̇ = F (η), η(0, ξ) = ξ (31)

(the group Gt is a realisation of such evolution). The opera-
tor M is a differentiation “from the left”, so M is a deriva-
tion of the associative algebra on V generated by the usual
product x, y → xy. This algebra is automorphic for the dy-
namics of Eq. (30). In particular, the product of any two so-
lutions x(t, ξ)y(t, ξ) is again a solution. The conservation
lawsMx(ξ) = 0 of Eq. (30) are in a one-to-one correspon-
dence with the conservation laws ⟨F,∇x⟩ = 0 of Eq. (31). In
some cases, this observation helps to find conservation laws
for the nonlinear dynamics of Eq. (31) from the linear dynam-
ics of Eq. (30).

The classical case is the Hamiltonian dynamics where the
manifold Ξ is even-dimensional, n = 2m, and F is a Hamil-
tonian vector field:

F (ξ) = J∇h(ξ), J =

(
0 Im

−Im 0

)
.

Here h(ξ) ∈ V is the Hamiltonian, J is the matrix of a sym-
plectic bilinear form onΞ (Im is them×m unit matrix). The
Hamiltonian h(ξ) is always a conservation law for Eq. (31).
In fact, Mx = {h, x}, so Mh = {h, h} = 0 where the
Poisson bracket

{x, y} = ⟨J∇x,∇y⟩

defines a Lie algebraic structure on the functional vector
space V . In some cases, the condition {h, x}=0 provides ad-
ditional conservation laws x of Eq. (31). Along with the as-
sociative algebra generated by the usual product, the Lie al-
gebra with the Poisson bracket is also automorphic for the
dynamics of Eq. (30). This imparts the relevant Lie alge-
braic structure to the space of solutions to Eq. (30). Here
M = ad(h) is an inner derivation, so in the Hamiltonian
case Eq. (30) ẋ = {h, x} is of the Lax type. The symplectic
structure makes the manifold Ξ a symplectic manifold. Any
symplectic manifold can be realised as an orbit of the coad-
joint representation of some Lie group [28]. Extensions re-
lated to partial differential equations and quantummechanics
are possible [9, 28].
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