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Abstract

The concept of the hafnian first appeared in the works on
quantum field theory by E. R. Caianiello. However, it also has
an important combinatorial property: the hafnian of the adja-
cency matrix of an undirected weighted graph is equal to the
total sum of the weights of perfect matchings in this graph.
In general, the use of the hafnian is limited by the complexity
of its computation. In this paper, we present a method for the
exact calculation of the hafnian of two-parameter matrices.
In terms of graphs, we count the total sum of the weights of
perfect matchings in graphs whose edge weights take only
two values. This method is based on the formula expressing
the hafnian of a sum of two matrices through the product of
the hafnians of their submatrices. The necessary condition
for the application of this method is the possibility to count
the number of k-edge matchings in some graphs. We con-
sider a special case in detail using a Toeplitz matrix as the
two-parameter matrix. As an example, we propose a new in-
terpretation of some of the sequences from the On-Line En-
cyclopedia of Integer Sequences and then provide new ana-
lytical formulas to count the number of certain linear chord
diagrams.
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Introduction

Let A = (ai;) be a symmetric matrix of even order n
over a commutative associative ring. The hafnian of A is de-
fined as

Hf(A) = >

(i192]..-[tn—1%n)

Aiyig " Qigy_1ip >

where the sum ranges over all unordered partitions of the
set{1,2,...,n}intounordered pairs (i1i2), . .., (in—1%n)-
Therefore, if n = 4, then Hf(A) = aj2a34 + a13a24 +
aj4a93. The hafnian of the empty matrix is considered as 1.
Note that the elements of the main diagonal are not included
in the definition of the hafnian. For the sake of convenience,
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AHHoOTaLMA

MonsiTue ratHMaHa BnepBbie nosiBunoch B paborax 3.P. Ka-
AHbENNo No KBaHTOBOH Teopun nons. OfHaKo racHuaH 06-
NafaeT TakKe M BaXKHbIM KOMGMHATOPHbIM CBOWCTBOM: rad-
HUaH MaTpULLbl CMEXXHOCTW HEOPUEHTMPOBAHHONO B3BELIEHHO-
ro rpatha paBeH CyMMe BECOB COBEpLUEHHbIX NapoCcoyeTaHuil
B 3ToM rpade. B obwem cnyuae ucnonbsoBaHue ratHuaHa
OrpaHUuYEHo CNIOXKHOCTbIO ero BbluncneHus. B paHHoii pabo-
Te NpepcTaBNeH MeToh, ANS TOUHOr0 BbluMCNEHUs radiHMaHa
ABYyXnapaMeTpuyeckux mMatpui. C Touku speHns Teopuu rpa-
thoB Mbl cuuTaeM oblyyo cyMMy BeCOB COBEPLIEHHbIX Napo-
coueTaHuit B rpacax, Beca pebep KoTOpbIX NPUHUMAIOT TONb-
KO fBa 3HaueHus. ITOT METOR OCHOBaH Ha thopMyne, Bbipa-
Kalowei radHuaH cyMMbl ABYX MaTpuL, Yepes NpousBefeHue
radHuaHoB ux nogMarpuu. HeobxogumbiM ycnoeueM npume-
HEHWUs! JaHHOTO0 MeTof,a SIBNSIETCS BO3MOXHOCTb NOACYETA KO-
nuuectBa k-pebepHbix NapocoyeTaHuii B onpepeneHHbIX rpa-
thax. Moppo6Ho pasobpaH cneunanbHbiM Clyyai, rae B Ka-
yecTBe ABYXMapaMeTpMUeCKOW MaTpuLibl paccMOTpeHa Ten-
nuueBa MaTpuua, a Kak NpuMep AaHa HoBas WHTepnpeTauus
HeKoTopbIX nocnepoBatenbHocTeil us OHNaitH-3HLMKNONe AU
LleNIouMCNeHHbIX NocnefoBaTeNbHOCTEN, a TaKkKe NpuBepe-
Hbl HOBbIE aHanUTUYecKne hopMynbl NS onpepeneHns uucna
HEeKOTOPbIX IUHENHBIX XOPAOBbIX AUArpaMM.

KnioueBble cnoBa:

rajHuaH, napocouyeTaHue, B3BeleHHbIM rpad, Tennuuesa
MaTpuua, AyroBas guarpaMMa, TpeyroibHas pewerka

we assume that all matrices under consideration have a zero
main diagonal.

A k-edge matching in a graph is a set of its k pairwise
nonadjacent edges. An m-edge matching in a graph with 2m
vertices is called perfect matching. If a graph is weighted,
then the weight of the matching is a product of the weights
of the edges included in this matching. The hafnian has a
useful combinatorial property related to an important prob-
lem in graph theory and its applications: if M is the adja-
cency matrix of an undirected weighted graph with an even
number of vertices, then Hf(1/) equals the total sum of the
weights of the perfect matchings in the graph. Unfortunately,
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the widespread use of the hafnian is limited due to the com-
plexity of its computations in general. For example, one of
the fastest exact algorithms to compute the hafnian of an ar-
bitrary complex n x n matrix runs in O(n32"/2) time, and,
as the authors show, it seems to be close to an optimal one [1].

Because the calculation of the hafnian has a high compu-
tational complexity in general, the actual problem is the dis-
covery of efficient analytical formulas expressing the hafnian
for special classes of matrices. Let T;, be a symmetric (0, 1)-
matrix of order n, and let @ and b be elements of a ring R. We
denote a symmetric matrix of order n by T, (a, b), which is
obtained from 77, by replacing all instances of 1 by @ and all
zero elements outside the main diagonal by b. For example
(dots denate zeros),

. 1 . . a b
T; = 1 - 1 — Tg(a, b) = a - a
-1 b a

We can say that T, (a, b) is a two-parameter matrix, and T,
is the template for T}, (a, b). Note that T},(1,0) = T},. Inour
work, we present a method for the exact computation of the
hafnian of matrices T, (a,b). In terms of graphs, we count
the total sum of weights of perfect matchings in two-param-
eter weighted graphs (i.e., weights of the edges are only a and
b). This method is based on the formula expressing the haf-
nian of a sum of two matrices through the sum of the prod-
uct of the hafnians of matrices and is also closely linked to
the combinatorial problem of counting the number of k-edge
matchings in graphs. In theoretical physics, this problem is
known as the monomer-dimer problem [2).

Recall that an arc diagramis a graph presentation method
in which all the vertices are located along a line in the plane,
whereas all edges are drawn as arcs (Figure 1). In this work,
it will be convenient for us to represent graphs in the form of
arc diagrams. Perfect matchings of arc diagrams are often
called linear chord diagrams (3, 4).

D E F A B c D E F

Figure 1. A binary tree and its corresponding arc diagram.
PucyHok 1. BuHapHoe fepeBo ¥ COOTBETCTBYHOWLAs My AyroBas Auarpamma.

1. Hafnian of two-parameter matrices

To begin with, consider two properties of the hafnian. The
first one is quite obvious.
Proposition 1. Let A be a symmetric matrix of even order n
over a commutative associative ring R, and ¢ € R. Then

Hf(cA) = ¢"/?Hf(A). (1)

Let Q. denote the set of all unordered k-element sub-
sets of {1,2,...,n}. Let A be a matrix of order n and
a € Q. Moreover, Alo] denotes the submatrix of A
formed by the rows and columns of A with numbers in ¢, and

A{a} denotes the submatrix of A formed from A by remov-
ing the rows and columns with numbers in .

Proposition 2. Let A and B be symmetric matrices of even
order n. Then

n/2
Hf(A+B)=>_ > Hf(Ala)H{(B{a}). (2
k=0 a€Q2k,n

Jy(b) denotes a matrix of order n whose elements out-
side the main diagonal are equal to b. From the definition of
the hafnian, it follows that

(2m)!
m

ml2m’ )
Since To., (@, b) = Jom (b)+Tom (a—0b, 0), using formulas
(1), (2), and (3), we can write the following:

Hf(J2pm (b)) =0

Hf (Tom (a, b)) = HE(Jom (b) + Tom(a — b,0)) =

=3 Y HEan (D)) HETam(a=b, 0){a}) =

k=0 a€Q2k,2m

_ - m—k k(2k)'
- kz;;(“ — O

> Hf(Tam{a}).

O5€Q2k:,27n
(4)

Here, we use the fact that the matrix Ja,,, (b)[a] has the same
form as the initial matrix Ja,, (b), that is, Jo,,, (b)[a] is a ma-
trix of order 2k whose elements outside the main diagonal are
equal to b.

If M is a symmetric nonnegative integer matrix, then
['(M) denotes a multigraph with the adjacency matrix M.
If & € Q2r,2m, then the hafnian Hf (7%, {}) equals the
cardinality of a set of (m — k)-edge matchings in the graph
I'(T5,,); moreover, such sets do not intersect for different
«, and their union is the set of all (m — k)-edge matchings
of the graph I'(7%,,). Given a graph T', let ux (L") denote
the number of all its £-edge matchings. By definition, we set
po(I') = 1. Thus,

> Hf(Tomf{e}) = pm—r(T(Tom)),

a€Qak,2m

and therefore,

= (a—b)mFv* (]3’;2; fim—1(D(Tom)).  (5)

Note that (5) is the special case of Theorems 1W and 3W given
in [5] in terms of matching vectors of weighted graphs and
their complements. The special case of (5) when ¢ = 0 and
b = 1is also given in [6] (Theorem 4).

Thus, to calculate the hafnian of a two-parameter matrix
by using formula (5), one needs to determine the number of k-
edge matchings of graphs corresponding to the matrix, which
is a nontrivial task in general. One of the simplest special
cases was considered in [7]. In the following section, we con-
sider a more complicated special case.
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2. Hafnian of Toeplitz matrices D,,(a, b)

Recall that a matrix is called Toeplitz if all its diagonals
parallel to the main diagonal consist of the same elements. It
is obvious that a symmetric Toeplitz matrix is uniquely deter-
mined by its first row. As the template matrix 7T},, consider a
symmetric Toeplitz matrix of order n with the first row

(001 1.0 ... 0).

We denote it by D,,. This matrix is the adjacency matrix of the
arc diagram shown in Figure 2.

T

n72n71 n

Figure 2. The arc diagram I‘(Dn).
PucyHok 2. lyrosas auarpamma I'(Dy,).

Theorem 1. Let k and n be nonnegative integers such that
k < |Z|. Then, the number of k-edge matchings in the arc
diagramT'(D,,) is equal to the following:

;;C’X%%@@

Proof. For convenience, we use the abbreviated notation
wp,k for pk(T(Dy,)). Consider a k-edge matching in
['(D,,). If n > 4, then the following four cases are possi-
ble: the first vertex of the diagram is not incident to the edge
of the matching (Figure 3(a)); the first and second vertices are
connected by an edge of the matching (Figure 3(b)); the first
vertex is incident to an edge of the matching, but the second
vertex is not (Figure 3(c)); the first and second vertices are
incident to different edges of the matching (Figure 3(d)).

o - .. iy .
1 1T 2

() (d)

Figure 3. Possible cases of matchings in the arc diagram F(Dn).
PucyHok 3. BoaMoHble Clyuyau nmapocoueTaHuit B OYroBoiM Luarpamme

I'(D,).

It follows from the above that w,, ;. satisfies the recur-
rence relation

Wn+44,k+2 =
= Wn43,k+2 + Wnt2,k+1 T Wnt1 k41 + Wn i (7)
with the initial conditions w,, ;, = 0 for k& > L%Jiwn,o =1

for all n; wyp,1 = 2n — 3 for n > 2. Consider the two-
parameter generating function for the sequence wy, x:

+oo I_%J
t) = Z Z wmkxkt".

n=0 k=0

On multiplying (7) by 2%*3¢"+3 and summing over all possi-
ble k and n, we get the following equation:

+oo L%J

k+3 3
Z an+4,k+2$ S =

n=0 k=0
+o0o L%J

S vt

n=0 k=0

+oo L%J

+ Z Z wn+2,k+1xk+3tn+3+
n=0 k=0

+oo I_%J
+ Z Z W1 12 T34

n=0 k=0
+o0 L%J

+ Z Z wn7k$k+3tn+3. (8)

n=0 k=0
On solving this equation, we obtain:

1
t _
w@t) =7 —t(1+xt+xt2+x2t3)

+oo m

-y ZZZ ( )( )( >xj+ptm+g+z+p

m=0 j=0 =0 p=0

)

Fix nonnegative integers & and n > 2k. From (9),
we see that the coefficient at 2*t" is equal to the sum
ZZ ("k Z) (" "), '), over all 4, p for which the inequal-

ItIESZszO k—p>i,n—k—1i>k—phold Itcan
be shown that this system of inequalities is equivalent to the
following system of inequalities: 0 < i < min(k, | 25%]),
max (0,7 + 2k —n) < p < min(i,k — 4). If we take
weaker restrictions 0 < i < k, 0 < p < i onthe indices i,
p, then the final formula will take a more compact form, but
additional zero summands may appear. This completes the

proof. O

Remark 1. Note that the arc diagram T'(D,,) is isomorphic
to the triangular lattice shown in Figure 4. Thus, formula (6)
also allows us to calculate the number of k£-edge matchings
in such lattices.

1 3 5 n—3n-—1
2 4 6 n—2 N
(a)

1 3 5 n—2 n
2 4 6 n—1

(b)

Figure 4. The triangular lattice I'( Dy, ): (a) m is even; (b) 7 is odd.
PucyHok 4. TpeyronbHas pewetka ' (D5, ): (a) 1 - uetHoe; (b) 72 - HeueTHoe.
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Remark 2. Several initial values ug(T'(D,,)) are presented
in Table. The empty cells correspond to zero. Note that the
sequence of the first nonzero elements in the rows is the Fi-
bonacci sequence, the sequence of the second nonzero el-
ements in the rows has the number 4023610 in [8], and
nonzero elements of the third row coincide with the sequence
A130883, excluding the starting element.

Number of k-edge matchings in the graph I'(D,, ).
Uneno k-pebepHbix napocouetanuit B rpade I'(Dy,).

kK\n|O|1]|2[3|4|5|6|7|8|9]|10

\
o(1j1j1j1j1r|14141(1}]1]1
1 11357 |9|11|13|15| 17
2 2|7 (16|29 (46|67 | 92
3 31154395179
4 5 130|104
5 8

Let R be acommutative associative ringwith 1and a, b €
R. Consider a symmetric two-parameter Toeplitz matrix
Dy, (a, b) having the first row in the form

(00a abd ... b).

On substituting the value g, —x(T'(D2yy,)) in (5), we obtain
the following theorem:

Theorem 2. If we assume that 0° = 1, then the hafnian of the
matrix Day, (a, b) is expressed using the following formula:

Hf (D2, (a,b)) =

=Y e )

_m*’“i <m+k:—z'> <m—k—p) <z)
== m—k—p 7 P
Example 1. Consider the matrix Ds,,(0,1). By calculating

its hafnian using formula (10) for consecutive ms, we obtain
the sequence:

0,0,1,10,99,1146, 15422, 237135, 4106680, . . .

In terms of graphs, the m-th member is equal to the num-
ber of perfect matchings in the arc diagram I'(Da,,, (0, 1))
(Figure 5). In other words, this is the number of linear chord
diagrams with m chords such that the length of every chord
is at least 3 (see also [4], [9]). This sequence has the number
A190823 in [8].

1 2 3 4 5 6 1 2 3 4 5 6

Figure 5. The arc diagram I'(Dg (0, 1)) and its only perfect matching.

Pucywok 5. [lyrosas auarpamma I'(Dg (0, 1)) v ee enuHcTaenHoe cosep-
LeHHOE NapocoyeTaHme.

Conclusion

We presented a general scheme for computation of the
hafnian of two-parameter matrices. We provided exact for-
mulas for a special case of Toeplitz matrix. The resulting for-
mulas can be used to determine the total sum of weights of
perfect matchings in the graphs. In addition, we obtained new
results regarding the number of k-edge matchings in some
special graph. In future works, the above methods could be
used to find analytical formulas for hafnians of other (two-
or more) parameter matrices, or this method could be ex-
tended to multidimensional matrices, hyperhafnians, and hy-
pergraphs.
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