Abstract and keywords
Abstract (English):
Discrete symmetry groups of motions of the elliptic, hyperbolic and Euclidean lines are described. Orbifolds on these lines, obtained by factorization by the corresponding discrete group, are considered. Orbifolds in the form of segments and circles can be used in Kaluza-Klein models and superstring theory for compactification of extra dimensions.

Keywords:
orbifolds, discrete groups, Cayley-Klein spaces
Text
Text (PDF): Read Download
References

1. Zwiebach, B. A first course in string theory / B. Zwiebach. – Cambridge: Cambridge University Press, 2021. – 864 p.

2. Becker, K. String theory and M-theory. A modern introduction / K. Becker, M. Becker and J. N. Schwarz. – Cambridge: Cambridge University Press, 2007. – 757 p.

3. Adem, A. Orbifolds and stringy Topology / A. Adem, J. Leida, Y. Ruan // Cambridge Tracts in Mathematics. – 2007. – Vol. 171. – 164 p.

4. Emmrich, C. Orbifolds as configuration spaces of systems with gauge symmetries / C. Emmrich, H. Römer // Commun. Math. Phys. – 1990. – Vol. 129. – P. 69–94.

5. Prokhorov, L. B. Phase space of mechanical systems with a gauge group / L. V. Prokhorov, S. V. Shabanov // Sov. Phys. Usp. – 1991. – Vol. 34, №2. – P. 108–140.

6. Prokhorov, L. V. Gamil‘tonova mekhanika kalibrovochny‘kh sistem [Hamiltonian mechanics of gauge systems] / L. V. Proxorov, S. V. SHabanov. – Moscow: URSS, KomKniga, 2006. – 292 p.

7. Kaluza, T. On the unification problem in physics / T. Kaluza // Int. J. Mod. Phys. D. – 2018. – Vol. 27, № 14. – 1870001, arXiv:1803.08616 [physics.hist-ph].

8. Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie / O. Klein // Zeitschrift für Physik A. – 1926. – Vol. 37, № 12. – P. 895–906.

9. Boos, E. E. Physics and phenomenology of large extra dimensions / E. E. Boos, V. E. Bunichev, I. P. Volobuev [et al.] // Sov. Phys. Usp. – 2025. – Vol. 68, iss. 2. – P. 111–145.

10. Aref’eva, I. Ya. Supersymmetry: Kaluza-Klein theory, anomalies, and superstrings / I. Ya. Aref’eva, I. V. Volovich. // Sov. Phys. Usp. – 1985. – Vol. 28, iss. 8. – P. 694–708.

11. Chodos, A. Kaluza-Klein theories: Overview / A. Chodos // Comm. Nucl. and Part. Phys. – 1984. – Vol. 13. – P. 171–181.

12. Rubakov, V. A. Large and infinite extra dimensions / V. A. Rubakov // Sov. Phys. Usp. – 2001. – Vol. 44, iss. 9. – P. 871–893.

13. Pimenov, R. I. An application of semi-Riemannian geometry to unified field theory / / R. I. Pimenov. // Dokl. Akad. Nauk SSSR. – 1964. – Vol. 157, № 4. – P. 795–797.

14. Pimenov, R. I. Kinematic spaces: mathematical theory of space-time / R. I. Pimenov. – New York: Consultants Bureau, 1970. – 185 p.

15. Gromov, N. A. Kontraktsii klassicheskikh i kvantovykh grupp [Contractions of classical and quantum groups] / N. A. Gromov. – Moscow: FIZMATLIT, 2012. – 318 p.

16. Randall, L. An alternative to compactification / L. Randall, R. Sundrum // Phys. Rev. Lett. – 1999. – Vol. 83, iss. 23. – P. 4690–4693, arXiv:hep-th/9906064.

17. Belavin, A. A. Explicit construction of N = 2 superconformal orbifolds / A. A. Belavin, S. E. Parkhomenko // Theoretical and Mathematical Physics. – 2021. – Vol. 209, iss. 1. – P. 1367–1386.

18. Belavin, A. A. Explicit construction of N = 2 SCFT orbifold models. Spectral flow and mutual locality / A. A. Belavin, V. A. Belavin, S. E. Parkhomenko // Nuclear Physics B. – 2022. – Vol. 982. – 115891.

19. Belavin, A. A. Mirror symmetry and new approach to constructing orbifolds of Gepner models / A. A. Belavin, S. E. Parkhomenko // Nuclear Physics B. – 2024. – Vol. 998. – 116431.

20. Pimenov, R. I. Edinaya aksiomatika prostranstv s maksimal’noj gruppoj dvizhenij [Unified axiomatics of spaces with maximal movement group] / R I. Pimenov // Lithuanian Math. J. – 1965. – Vol. 5, № 3. – P. 457–486.

21. Yaglom, I. M. A simple non-Euclidean geometry and its physical basis: an elementary account of Galilean geometry and the Galilean principle of relativity / I. M. Yaglom. – New York: Springer, 1979. – 307 p.

22. Aleksandrov, P. S. Enciklopediya elementarnoj matematiki. Kniga pyataya. Geometriya [Encyclopedia of elementary mathematics. Book five. Geometry] / P. S. Aleksandrov, A. I. Markushevich, A. Ya. Hinchin. – Moscow: Nauka, 1966. – 624 p.

23. Rozenfel’d, B. A. Geometriya grupp Li. Simmetricheskie, parabolicheskie i periodicheskie prostranstva [Geometry of Lie groups. Symmetric, parabolic and periodic spaces] / B. A. Rozenfel’d, M. P. Zamahovskij. – Moscow: MCNMO, 2003. – 560 p.

24. Rozenfel’d, B. A. Neevklidovy geometrii. [Non-Euclidean Geometries] / B. A. Rozenfel’d. – Moscow: GITTL, 1955. – 777 p.

25. Sosinskij, A. B. Geometrii [Geometries] / A. B. Sosinskij. – Moscow: MCNMO, 2017. – 263 p.

26. Isaev, A. P. Teoriya grupp i simmetrij. Kn. 2: Predstavleniya grupp i algebr Li. Prilozheniya [Theory of groups and symmetries. Book 2: Representations of Lie groups and algebras. Appendices] / A. P. Isaev, V. A. Rubakov. – Moscow: KRASAND, 2020. – 704 p.

27. Cartan, E. The theory of spinors / E. Cartan. – Cambridge: Mass., M.I.T. Press, 1967. – 157 p.

28. Kotel’nikov, A. P. Princip otnositel’nosti i geometriya Lobachevskogo [The principle of relativity and Lobachevsky geometry] / A. P. Kotel’nikov // Kazan’: In mem. Lobatschevskii, 2, GLAVNAUKA, 1927. – P. 37–66.

29. Novikov, S. P. Modern geometric structures and fields / S. P. Novikov, I. A. Taimanov. – Amer. Math. Soc., 2006. – 659 p.

30. Oshemkov, A. A. Kurs naglyadnoj geometrii i topologii [Course of visual geometry and topology] / A. A. Oshemkov, F. Yu. Popelenskij, A. A. Tuzhilin [et al.]. – Moscow: LENAND, 2016. – 352 p.

31. Vinberg, E. B. Discrete groups of motions of spaces of constant curvature / E. B. Vinberg, O. V. Schwarzman. – Geometry-2. Itogi nauki i tekhniki. Ser. sovrem. probl. mat. Fund. napr. – Moscow: VINITI, 1988. – Vol. 29. – P. 147–259.

32. Weyl, H. Symmetry / H. Weyl. – Princeton Univ. Press, 1952. – 168 p.

33. Zelevinsky, V. G. Quantum physics / V. G. Zelevinsky. – Weinheim: Wiley-VCH, 2011. – Vol. 1. – 602 p.

34. Gromov, N. A. Kvantovaya mekhanika na odnomernyh geometriyah Keli-Klejna [Quantum mechanics on onedimensional Cayley-Klein geometries] / N. A. Gromov, V. V. Kuratov // Izvestiya Komi NC UrO RAN. – 2017. – № 2 (30). – P. 5–11.

35. Ol’hovskij, I. I. Kurs teoreticheskoj mekhaniki dlya fizikov [Course of theoretical mechanics for physicists] / I. I. Ol’hovskij. – Moscow: MGU, 1978. – 576 p.

36. Einstein A. The particle problem in the general theory of relativity / A. Einstein and N. Rosen // Phys. Rev. – 1935. – Vol. 48, iss. 1. – P. 73–77.

Login or Create
* Forgot password?