БИОГЕОСОРБЕНТ «ГЕОЛЕКС»: ВНЕДРЕНИЕ ТЕХНОЛОГИЙ В ПРАКТИКУ
Аннотация и ключевые слова
Аннотация (русский):
Нефтегазовая промышленность играет ключевую роль в экономике России, однако по опасности воздействия на окружающую среду она занимает одно из первых мест среди отраслей современного производства. Необходимость скорейшего возвращения территорий в хозяйственный оборот требует оперативного устранения последствий нефтяного загрязнения почвенного покрова. Это достигается комплексом работ, включающим в том числе и биотехнологические продукты и технологии их использования. Объектами исследования были загрязненные почвы опытно-промышленных участков РК, ЯНАО, ХМАО. Методы, ускоряющие процессы восстановления почв, включали использование биогеосорбента «Геолекс», состоящего из глауконитсодержащей породы и иммобилизованных микроорганизмов-нефтедеструкторов биопрепарата «Биотрин». Внедренные биотехнологии усиливали процессы дегидрирования и окисления нефти и нефтепродуктов на загрязненных участках. К концу эксперимента дегидрогеназная активность рекультивируемых почв снижалась, что свидетельствовало о восстановительном характере сукцессии. Эффективность очистки от поллютантов на опытно-промышленных участках составила 68—95 % за 60 суток.

Ключевые слова:
загрязнение почвы, нефть, нефтепродукты, биогеосорбент, опытно-промышленные испытания, очистка почвы
Текст
Текст произведения (PDF): Читать Скачать

Введение

Уязвимость северных и арктических экосистем перед антропогенной нагрузкой обусловливает необходимость разработки эффективных биотехнологических методов, направленных на ускорение их восстановления. Актуальными направлениями экологической биотехнологии являются биоремедиация нефтезагрязненных территорий и очистка водоемов от нефти, в том числе с помощью применения различных минеральных сорбентов и биосорбентов [1, 2, 10—12]. Проведенные нами ранее лабораторные исследования также подтвердили, что биосорбционный метод очистки позволяет не только собрать нефть и нефтепродукты с водной поверхности или почвы, но и с помощью иммобилизованных микроорганизмов провести их дальнейшую деструкцию [6, 13—15]. Для оценки работы биогеосорбента в натурных условиях были проведены опытно-промышленные испытания его биотехнологических свойств.

Целью данной работы была оценка технологий биоремедиации с применением биогеосорбента «Геолекс» в полевых экспериментах.

 

Объекты и методы исследования

Комплекс проведенных работ включал следующие биотехнологические продукты:

1. Биогеосорбент «Геолекс». Состав биогеосорбента «Геолекс»: клетки биопрепарата «Биотрин» — альго-бактериально-дрожжевого консорциума — бактерий Pseudomonas yamanorum ВКМ В-3033D, дрожжей Rhodotorula glutinis VKM Y-2998D, микроводорослей Chlorella vulgaris Beijer. f. globosa IPPAS C-2024, иммобилизованного на глауконитсодержащем песке Бондарского месторождения Тамбовской области (рис. 1, табл. 1, 2) [5].

2. Кородревесная смесь — хорошо разложенные органические остатки со следующими свойствами: рН(вод.) — 8.15; рН(сол.) — 7.56; массовая доля азота общего — 6300 мг/кг; значения массовой доли подвижных соединений фосфора (в пересчете на P2O5) — 7000 мг/кг, калия (в пересчете на K2O) — 1030 мг/кг, Mg — 3500 мг/кг, Ca — 130 000 мг/кг.

3. Материалы, необходимые для проведения технологии биоремедиации (минеральные удобрения NPK, семена трав).

4. Загрязненные почвы, грунты.

Опытно-промышленные испытания (ОПИ) технологий с применением биогеосорбента «Геолекс» (табл. 3)

1. На территории Ямало-Ненецкого автономного округа в районе кранового узла на 76-м км трассы Новый Уренгой — Сургут был поставлен эксперимент на площадках размером (1 × 1 м). Почва (торф) была загрязнена нефтепродуктом — газолином (до 20 г/кг). В начале эксперимента с каждого участка была отобрана проба почвы (контроль). В почву экспериментальных участков были внесены минеральные удобрения (N14P14K14) в количестве 12 г и биогеосорбент «Геолекс» в количестве 20 г. Почву перекопали на штык лопаты. Эксперимент был поставлен в трех повторностях. Пробы почвы отбирали до внесения биогеосорбента и спустя 60 суток после начала эксперимента. Обозначение участка эксперимента: ОПИ-1.

2. На территории Ханты-Мансийского автономного округа в районе трассы Лангепас — Покачи на загрязненной нефтью (до 6.6 г/кг) почве (торф) было разбито 3 участка 1 × 1 м в трех повторностях. В начале эксперимента с каждого участка была отобрана проба почвы (контроль). В емкостях (0.5 дм3) были разведены азотно-фосфорно-калийные удобрения (N14P14K14) по 12 г и внесены в почву. Биогеосорбент «Геолекс» был внесен в почву участков в количестве 20 г. Почву перекопали на штык лопаты. Пробы почвы отбирали до внесения биогеосорбента и спустя 60 суток после начала эксперимента. Обозначение участка эксперимента: ОПИ-2.

3. На территории Республики Коми, в г. Сык­тывкаре, в районе насосной подстанции предприятия АО «Комиавиатранс» был поставлен эксперимент на площадках размером 1 × 1 м. Почва (насыпной грунт из песчано-гравийной смеси) была загрязнена нефтепродуктом — керосином (до 32 г/кг). В почву экспериментальных участков были внесены минеральные удобрения (N14P14K14) в количестве 2 г (растворялись в 1 дм3 воды) и биогеосорбент «Геолекс» в количестве 35 г (активировали в 1 дм3 воды). Почву перекопали на штык лопаты. Пробы почвы отбирали до внесения биогеосорбента и спустя 60 суток после начала эксперимента. Обозначение участка эксперимента: ОПИ-3.

4. На территории Республики Коми, в п. Ярега, в районе демонтированного резервуарного парка был поставлен эксперимент на площади участка 100 м2. Почва (насыпной грунт — тяжелый суглинок) была загрязнена нефтью (до 11 г/кг). В почву экспериментального участка были внесены кородревесная смесь (покрытие поверхности загрязненного участка не более 5 см), минеральные удобрения (N14P14K14) в количестве 10 кг, активированный биогеосорбент «Геолекс» в количестве 10 кг, семена трав-рекультивантов (мятлик, овес, канареечник, клевер) в количестве 10 кг. До посева трав почву взрыхлили мотокультиватором. Пробы почвы отбирали до внесения биогеосорбента и спустя 60 суток после начала эксперимента. Обозначение участка эксперимента: ОПИ-4.

Содержание нефтепродуктов (НП) определяли гравиметрическим методом, РД 52.18.647-2003 в экоаналитической лаборатории Института биологии Коми НЦ УрО РАН следующими этапами: извлечение НП из пробы путем их экстракции хлороформом; очистка экстракта методом колоночной хроматографии; определение массовой доли взвешиванием после упаривания очищенного экстракта пробы. Оборудование: весы лабораторные аналитические 1 класса точности XP205 Госреестр 30047-06, Швейцария, Mettler Toledo.

Для биохимических анализов за основу были взяты методы почвенной энзимологии [4]. Дегидрогеназную активность рассчитывали по оптической плотности. Оборудование: фотоколориметр КФК-3.

 

Результаты и обсуждение

Оценка функциональных свойств биогеосорбента «Геолекс»

Активность ферментов как индикатор биологической активности объекта можно применять в разных случаях. Так, например, для анализа различных функциональных показателей иммобилизованных клеток на сорбентах, таких как жизнеспособность, метаболическая и синтетическая активность, предлагаются методы, которые условно можно разделить на микробиологические, морфоцитохимические и биохимические [8].

Выбранный нами метод определения ферментативной активности является достаточно чувствительным, отражающим функциональное состояние микроорганизмов. Наиболее точный и нетрудоемкий способ определения жизнеспособности иммобилизованных клеток на сорбенте — это метод определения дегидрогеназной активности биогеосорбента.

Клетки микроорганизмов биогеосорбента «Гео­лекс» активировали путем замачивания в воде на 60 минут (вариант 1, 2), в вариантах 3—5 проводили измерение дегидрогеназной активности без активации (табл. 4).

Дегидрогеназная активность глауконитсодержащего песка без иммобилизации микроорганизмов была нулевой. Дегидрогеназная активность активированного биогеосорбента превышала таковую в неактивированном в 2.1—2.9 раза (табл. 4). Из этого следовало, что в технологиях рекультивации необходимо рекомендовать применение биогеосорбента, предварительно замоченного в воде, для ускорения процессов деструкции нефти и нефтепродуктов.

 

Таблица 4. Дегидрогеназная активность биогеосорбента «Геолекс», мг формазана/1 г а. с. п.

Table 4. The dehydrogenase activity of the GEOLEX biogeosorbent, mg of formazan per 1 g of totally-dried soil

Варианты

Options

Дегидрогеназная активность

Dehydrogenase activity

1

9.75 ± 0.22

2

8.57 ± 0.38

3

3.33 ± 0.11

4

3.39 ± 0.11

5

3.74 ± 0.13

Глауконитсодержащий песок

Glauconite-bearing sand

0

 

 

Оценка технологий применения биогеосорбента «Геолекс»

Благодаря высоким сорбционным свойствам почвы нефтяные углеводороды способны аккумулироваться и сохраняться в ней длительное время, значительно ухудшая свойства почвы и ее биологическую активность. Нефть и нефтепродукты каждого региона имеют свой характерный состав, и эффект воздействия на почву будет зависеть от климатической зоны. Исходя из этого, очевидно, что и для рекультивации нефтезагрязненных объектов в каждом конкретном случае должен применяться индивидуальный подход. Условия и технологии опытно-промышленных испытаний биогеосорбента «Геолекс» представлены в таблице 3. Технология биорекультивации торфяной почвы, загрязненной газолином (ОПИ-1) и нефтью (ОПИ-2), была аналогична. В насыпной грунт из песчано-гравийной смеси, загрязненный керосином, не вносили травосмесь (ОПИ-3), а разрыхляли тяжелый суглинок, загрязненный нефтью (ОПИ-4), путем внесения кородревесной смеси с последующим применением биогеосорбента «Геолекс».

Точно предсказать результаты рекультивационных мероприятий и гарантировать успех восстановления почв в полной мере в настоящее время не представляется возможным, так как процессы, определяющие динамику токсичности нефтезагрязненных почв, изучены недостаточно. И в то же время показатели биологической активности позволяют с минимальными затратами оценить влияние поллютантов на плодородие почв.

Ранее проведенные в полевых условиях исследования показали возможность использования дегидрогеназы как наиболее чувствительного фермента, реагирующего на появление в почве поллютанта [3, 7, 9]. Внедренные биотехнологии усиливали процессы дегидрирования в загрязненных нефтью и нефтепродуктами участках за счет привнесения в почву микроорганизмов биогеосорбента, питательных элементов глауконитсодержащей породы, стимулирующих аборигенную микробиоту, аэрации почвы с помощью трав-рекультивантов и структуратора — кородревесной смеси (рис. 2). К концу эксперимента дегидрогеназная активность рекультивируемых почв снижалась, что свидетельствовало о восстановительном характере сукцессии.

Начальная концентрация нефти и нефтепродуктов в почве рекультивируемых участков была разная. Наиболее загрязненным участком была территория в районе насосной подстанции предприятия АО «Комиавиатранс» Республики Коми в г. Сыктывкаре (ОПИ-3) (рис. 3). К концу эксперимента содержание поллютанта в почвах участков ОПИ-2, ОПИ-4 снизилось до уровня допустимого остаточного содержания нефти в почве.

Эффективность примененных технологий очистки от нефти и нефтепродуктов была высокой в почве участков ОПИ-2 — ОПИ-4 (табл. 5) и невысокой в почве участка в районе кранового узла на 76-м км трассы Новый Уренгой — Сургут на территории Ямало-Ненецкого автономного округа, что говорило о токсичности газолина и, как следствие, о необходимости проведения на этом участке дополнительных биорекультивационных мероприятий: внесения кородревесной смеси, увеличения количества вносимого биогеосорбента.

 

Таблица 5. Эффективность очистки почвы от нефти и нефтепродуктов, %

Table 5. The efficiency of soil cleanup, %

ОПИ

Option

Эффективность очистки, %

Efficiency of cleanup, %

1

68

2

89

3

81

4

95

 

Заключение

В результате иммобилизации на глауконитсодержащем песке клетки микроорганизмов, а также их разнообразные ферменты стабилизируются и длительное время сохраняют свою активность. Глауконитсодержащая порода является носителем пролонгированного действия, обеспечивая клеткам биопрепарата повышение терморезистентности, стрессоустойчивости. Перед применением биогеосорбента «Геолекс» в технологиях рекультивации необходима активация иммобилизованных на нем микроорганизмов.

Технологии рекультивации, проведенные на загрязненных участках с применением биогеосорбента «Геолекс», усиливали процессы дегидрирования и окисления нефти и нефтепродуктов. Эффективность очистки от поллютантов на рекультивируемых опытно-промышленных участках составила 68—95 % за 60 суток.

Список литературы

1. Васильева Г. К., Зиннатшина Л. В., Ахметов Л. И., Сушкова С. Н. Биорекультивация загрязненных углеводородами нефти почв с использованием метода сорбционной биоремедиации // Отходы, причины их образования и перспективы использования: Сб. науч. тр. по материалам междунар. науч. эколог. конф. 2019. С. 345-348.

2. Дегтярева И. А., Мотина Т. Ю., Бабынин Э. В, Ежкова А. М., Давлетшина А. Я. Эколого-токсикологическая оценка процесса биоремедиации нефтезагрязнённой почвы // Теоретическая и прикладная экология. 2020. № 3. С.196-202.

3. Мелехина Е. Н., Маркарова М. Ю., Щемелинина Т. Н., Анчугова Е. М., Канев В. В. Восстановительные сукцессии биоты в торфяной почве с нефтяным загрязнением при различных методах биологической рекультивации // Почвоведение. 2015. № 6. С. 740-750.

4. Хазиев Ф. Х. Методы почвенной энзимологии. М.: Наука, 2005. 252 с.

5. Щемелинина Т. Н., Котова О. Б., Хария М., Анчу­гова Е. М., Пеловский И., Кретеску И. Новые тренды в механизмах повышения производительности материалов на минеральной основе // Вестник ИГ Коми НЦ УрО РАН. 2017. № 6. С.40-42.

6. Щемелинина Т. Н., Котова О. Б., Анчугова Е. М., Шушков Д. А., Игнатьев Г. В. Цеолитовое и глинистое сырье: экспериментальное моделирование биогеосорбентов // Вестник ИГ Коми НЦ УрО РАН. 2018. № 9. С. 50-57.

7. Щемелинина Т. Н., Новоселова Е. И., Киреева Н. А., Маркарова М. Ю. Диагностирование степени загрязненности почв нефтью по показателям ферментативной активности // Вестник Оренбургского государственного университета. 2007. № 75. С. 432-434.

8. Юрин В. М., Дитченко Т. И. Иммобилизованные клетки и ферменты: Учебно-методический комплекс. Минск: Белорусский государственный университет, 2014. 138 с.

9. Anchugova E. M., Melekhina E. N., Markarova M. Yu., Shchemelinina T. N. Approaches to the assessment of the efficiency of remediation of oil-polluted soils // Eurasian Soil Science. 2016. Vol. 49. No. 2. P. 234-237.

10. Gasimova A. S. Use of biological products based on natural zeolites and biohumus in cleansing contaminated soils Absheron peninsula // Sciences of Europe. Biological sciences. 9 (9). 2016. P. 3-6.

11. Ionela D., Fertu T., Gavrilescu M. Application of natural zeolites as sorbents in the clean-up of aqueous streams // Environmental Engineering and Management Journal. 2012. 11(4):867-878.

12. Kashefi, S., Lotfollahi, M. N., Shahrabadi, A. Investigation of asphaltene adsorption onto zeolite beta nanoparticles to reduce asphaltene deposition in a silica sand pack // Oil & Gas Science and Technology - Rev. IFP Energies nouvelles. 2018. 73(2). DOIhttps://doi.org/10.2516/ogst/2017038

13. Shchemelinina T. N., Gömze L. A. Kotova O. B., Ibrahim J. E. F. M., Shushkov D. A., Harja M., Ignatiev G. V., Anchugova E. M. Clay- and zeolite-based biogeosorbents: modelling and properties // Építőanyag - Journal of Silicate Based and Composite Materials. 2019. Vol. 71. No. 4. Р. 131-137. DOIhttps://doi.org/10.14382/epitoanyag-jsbcm.2019.23

14. Shchemelinina T. N.,Anchugova E. M., Kotova O. B., Shushkov D. A. 2021. The analcime-bearing rock immobilized microalgae: Stress resistance, psychrotolerance, phenol removal // Bioresource Technology. 332, 124560. DOIhttps://doi.org/10.1016/j.biortech.2020.124560

15. Shchemelinina T. N., Kotova O. B., Anchugova E. M., Shushkov D. A., Ignatiev G. V. Zeolite and clay raw: experimental modeling of biogeosorbents // Vestnik of Institute of Geology of Komi Science Center of Ural Branch RAS. 2018. № 9 (285). С. 50-57.

Войти или Создать
* Забыли пароль?