Первые U/Pb-данные о возрасте детритового циркона из песчаников золотоносной верхнекембрийско-нижнеордовикской алькесвожской толщи (Приполярный Урал)
Аннотация и ключевые слова
Аннотация (русский):
В статье приведены первые изотопные данные о возрасте песчаников золотоносной алькесвожской толщи в основании палеозойского разреза на Приполярном Урале. На основании анализа U/Pb-датирования детритового циркона установлено, что песчаники были сформированы не ранее, чем в позднем кембрии—раннем ордовике. Преобладающая часть датировок располагается в узком возрастном позднерифейско-позднекембрийском интервале, а циркон представлен неокатанными или слабоокатанными кристаллами. Установлено, что в составе песчаников алькесвожской толщи преобладают продукты разрушения подстилающих пород магматических комплексов различных стадий формирования тиманид-протоуралид.

Ключевые слова:
циркон, поздний кембрий, ранний ордовик, алькесвожская толща, саблегорская свита, Приполярный Урал
Текст
Текст произведения (PDF): Читать Скачать

Терригенная алькесвожская толща на Приполярном Урале, залегающая над крупным стратиграфическим перерывом на породах рифейско-вендского фундамента и продуктах их древнего выветривания (kv Є) и перекрытая толщей нижнеордовикских конгломератов обеизской (O1ob) свиты, является вмещающей для многочисленных проявлений золоторудной минерализации. Первые рудопроявления с высокими содержаниями золота описаны В. С. Озеровым в долине руч. Алькесвож на восточном склоне хр. Малдынырд в 80-х годах XX века [7]. Золотоносности алькесвожской толщи посвящены многочисленные геолого-разведочные и научно-исследовательские работы (Ефанова, 2001; Ефанова, Повонская, 1999; Ефанова и др., 1999; Козырева, Швецова, 1998; Козырева и др., 2002; Кузнецов и др., 2001; Озеров, 1996; Озеров, 1998; Юдович, Ефанова, 2002; и др.). По результатам поисково-разведочных работ Л. И. Ефановой подробно охарактеризован петрографический и минералогический состав всех слагающих алькесвожскую толщу литологических разновидностей горных пород, установлена ее приуроченность к депрессиям допалеозойского рельефа [3]. Считается, что изначально золото было сконцентрировано в локально сохранившейся в основании разреза уралид кембрийской коре выветривания (kv Є) по слагающим ядро Малдинской синклинали кислым и основным вулканитам верхнерифейско-вендской саблегорской (RF3–V1sb) свиты. Наличие переотложенного глиноземистого и железистого материала коры выветривания — диаспора, пирофиллита, серицита и гематита — принято в качестве основного диагностического признака пород алькесвожской толщи. Вопрос о возрасте алькесвожской свиты до настоящего времени остается нерешенным. На геологических картах песчано-гравийная толща на контакте между рифей-вендским комплексом доуралид и комплексом уралид была показана как обеизская (O1ob), саблегорская (RF3–V1sb) или лаптопайская (V2lp) свиты. Лаптопайской молассой считала эти отложения Л. Т. Белякова [1]. В. С. Озеровым и Л. И. Ефановой возраст алькесвожской толщи на основании особенностей залегания и положения в разрезе принят как позднекембрийско-раннеордовикский [7, 3]. Отсутствие однозначного представления о возрасте золотоносной алькесвожской толщи определило необходимость проведения U/Pb-изотопного датирования детритового циркона.

Материалы и методы

Проба среднезернистого светло-розовато-серого слюдистого песчаника алькесвожской толщи (обр. АЛ-4) отобрана в точке с координатами (65°14'16'' с. ш., 60°16'17'' в. д.) в коренном выходе на восточном склоне хр. Малдынырд (рис. 1). Минералогическая проба раздроблена в ступе и промыта до серого шлиха, после чего разделена на фракции с использованием бромоформа, магнитной и электромагнитной сепарации. Извлеченная под бинокуляром монофракция циркона была помещена в эпоксидную шашку. Морфо­логические особенности и химический состав цирконов изучены с помощью сканирующего электронного микроскопа TESCAN VEGA3 LMH c энергодисперсионной приставкой X-MAX 50 mm Oxford instruments при ускоряющем напряжении 20 кВ, диаметре зонда 180 нм и области возбуждения до 5 мкм и сканирующего электронного микроскопа JSM–6400 с энергетическим спектрометром Link, с ускоряющим напряжением и током на образцах 20 кВ и 2х10–9 A соответственно и сертифицированными стандартами фирмы Microspec в ЦКП «Геонаука» Института геологии Коми НЦ УрО РАН (Сыктывкар).

Определения U/Pb-изотопного возраста зерен циркона проведены с помощью устройства лазерной абляции UP-213 и одноколлекторного магнитно-секторного масс-спектрометра с индуктивно-связанной плазмой Element XR (LA-ICP-MS метод) в ЦКП ГИН СО РАН «Геоспектр» (Улан-Удэ). Методика измерения, обработка масс-спектрометрического сигнала, расчет изотопных отношений и возрастов изложены в работе [3]. Применялось лазерное излучение с частотою импульсов 10 Гц, плотностью потока энергии около 3.5 Дж/см2 и диаметром пучка излучения 25 мкм. В качестве внешнего стандарта использованы зерна эталонного циркона 91500, контрольного образца — зерна эталонного циркона Plešovice (аттестованный ID-TIMS возраст 337.13±0.37 млн лет) и GJ-1 (аттестованный ID-TIMS возраст 608.5±0.4 млн лет). В течение сессии, состоящей из 110 измеренных точек в зернах циркона пробы АЛ-4, внешний стандарт был измерен в 26 точках, каждый контрольный образец — в 12 точках. Относительная среднеквадратичная погрешность определения изотопного отношения в контрольных стандартах варьировала: для 207Pb/206Pb — в пределах 1.5–2.5 %; для 207Pb/235U — 1.3–2.5 %; для 206Pb/238U — 0.7–1.0 %. Средневзвешенное значение оценки возраста контрольных эталонных Plešovice-цирконов по 207Pb/206Pb-отношению составило 350 ± 22 млн лет, 207Pb/235U — 345 ± 6 млн лет и 206Pb/238U — 338 ± 1.5 млн лет; возраст GJ-1 по 207Pb/206Pb-отношению — 591 ± 21 млн лет, 207Pb/235U — 602 ± 4 млн лет и 206Pb/238U — 605 ± 3 млн лет. Эти данные отличаются от аттестованного возраста эталонного циркона не более чем на 0.6 % для средневзвешенного значения 206Pb/238U-возрастов, не более чем на 2.3 % для 207Pb/235U-возрастов и не более чем на 3.8 % для 207Pb/206Pb-возрастов. Поправка на обыкновенный свинец проведена с помощью процедуры 204Pb-коррекции [16], при этом изотопные отношения общего свинца определены с помощью двухстадийной модели эволюции изотопного состава свинца по [5]. В интерпретации учтены только оценки возраста, дискордантность которых не превышает 10 %, при этом для циркона моложе 1 млрд лет использовано 206Pb/238U-значение возраста, а для древних (>1 млрд лет) — 207Pb/206Pb-возраст.

Для получения катодолюминесцентного изображения цирконов был использован СЭМ ThermoFischer Scientific Axia ChemiSEM с выдвижным детектором катодолюминесценции RGB (цветная) с диапазоном обнаружения длин волн 350–850 нм. (ЦКП «Геонаука», ИГ ФИЦ Коми НЦ УрО РАН, Сыктывкар).

 

Геологическое положение, строение и состав отложений алькесвожской толщи

В южной части хр. Малдынырд, расположенного на западном фланге Ляпинского антиклинория Центрально-Уральской мегазоны, отложения допалео­зойского возраста представлены вулканитами саблегорской свиты (RF3–V1sb), прорванными базитами манарагского (bRF3–V) комплекса и риолитами Малдин­ской (lpV) субинтрузии (рис. 1).

В основании палеозойского разреза фрагментарным распространением пользуются глиноземистые и железистые образования метаморфизованной кембрийской коры выветривания (kv Є3), на которых залегает терригенная золотоносная алькесвожская толща (Є3–О1al), перекрытая отложениями обеизской (О1ob) свиты. Саблегорская свита (RF3–V1sb) в нижней части сложена основными эффузивами, в верхней — кислыми эффузивными и пирокластическими породами. Общая мощность саблегорской свиты составляет 500–1000 м. Позднерифейско-ранневендский возраст свиты установлен по залеганию на фаунистически охарактеризованных породах мороинской свиты и подтвержден геохронологическими датировками. Возраст риолитов хр. Малдынырд, по данным Е. И. Сороки и соавторов [10], составляет 603 ± 12 млн лет, по данным геолого-съёмочных работ ОАО «Полярноуралгеология» — 586 ± 21 млн лет [2]. Саблегорские субвулканические образования (RF3–V1sb) основного состава представляют собой субвулканическую фацию одноимённого базальт-риолитового вулканического комплекса.

Метаморфизованные коры выветривания (kv Є) сложены глиноземистыми и железистыми сланцами по субстрату саблегорских риолитов и базитов.

Алькесвожская толща (Є3–O1al), названная так по расположенному на восточном склоне хр. Малдынырд ручью Алькесвож — левому притоку р. Балбанъю, выполняет депрессии рельефа фундамента, имеет аллювиально-пролювиальное происхождение и представлена метаморфизованными косослоистыми песчаниками, гравелитами и конгломератами с прослоями и линзами сланцев. О континентальном происхождении отложений свидетельствуют преобладающая слабая окатанность обломков, присутствие в гравелитовых и песчаниковых пачках глинистых линз и прослоев, косая слоистость и резкие фациальные переходы. Для всех литологических типов отложений алькесвожской толщи характерно присутствие в цементе и обломочной части продуктов разрушения кор выветривания — диаспора, пирофиллита, серицита, гематита — что и послужило одним из основных признаков для ее выделения в отдельное стратиграфическое подразделение. Мощность алькесвожских образований колеблется от первых метров до 140–150 м [3]. Вне пределов палеодепрессий алькесвожская толща выпадает из разреза и обеизские конгломераты залегают непосредственно на породах фундамента.

Изучен циркон из среднезернистого розовато-серого слюдистого песчаника (обр. АЛ-4). Для пород характерна бластопсаммитовая структура, сланцеватая текстура. Обломочные зерна, длинные оси которых ориентированы согласно сланцеватости, представлены кварцем, обломками микрокристаллической кварцевой породы и пелитизированным полевым шпатом. Базальный кварц-хлорит-серицитовый цемент занимает около 20 % площади шлифа. Акцессорные минералы представлены эпидотом, цирконом и новообразованными апатитом и титанитом. Последний часто образует цепочки зерен вдоль сланцеватости. Гематит встречается в виде отдельных пластинчатых зерен и тонкодисперсного пигмента в цементе. В протолочной пробе встречены также рутил, ильменит, хромит, хлоритоид, монацит, ксенотим, ортит, дистен, фуксит и магнетит.

Обеизская свита (O1ob) представлена конгломератами, гравелитами, и кварцитовидными песчаниками. В подошве конгломератов фрагментарно распространен горизонт мелко-, среднезернистых кварцитовидных серо-вишневых песчаников (воротинская толща). Песчаники воротинской толщи встречаются лишь там, где развиты отложения алькесвожской толщи, и залегают на ее различных горизонтах с угловым несогласием 15–20°. Основной объем разреза свиты слагают олигомиктовые кварц-кварцитовые конгломераты, мощность которых изменяется от 80 до 300 м. Конгломераты залегают как на косослоистых песчаниках воротинского горизонта, так и на породах фундамента.

Среди детритового циркона в изученной пробе преобладают неокатанные и слабоокатанные короткопризматические кристаллы с гранями тетрагональной призмы и дипирамиды (Кудл 1.5–2.0), с размером зерна 150–220 µm (40 %). Около 25 % приходится на тетрагональные призматические кристаллы с хорошо сохранившимися гранями и сглаженными ребрами (К удл.1.4–1.8), размером 120–150 µm. Неокатанные и слабоокатанные удлиненно-призматические кристаллы (Кудл 2.1–2.7) размером 230–300 µm составляют около 15 %. Примерно 10 % зерен размером 90–150 µm хорошо окатаны, имеют округлую (Кудл 1.0–1.3) и овальную (Кудл 1.4–1.5) формы. Около 10 % приходится на обломки зерен и кристаллов. По результатам микрозондового анализа циркон содержит (мас. %): ZrO2 — 61.25–66.64, SiO2 — 32.59–36.21, HfO2 — 0.64–2.01.

 

Результаты датирования циркона

Датированы 104 зерна циркона, анализы с дискордантностью (D) > 10 % (12 зерен) были исключены из дальнейшего рассмотрения. Результаты остальных 92 изотопных анализов зерен циркона приведены в таблице 1. Возраст циркона варьирует от мезоархея (3068 ± ± 24 млн лет) до раннего ордовика (479 ± 4 млн лет) (рис. 2).

В рассматриваемой выборке наиболее древний возраст имеет одно зерно с мезоархейской (3068 ± 24 млн лет) датировкой. Для трех зерен установлен палеопротерозойский возраст — 2379 ± 26, 1951 ± 42 и 1924 ± 29 млн лет. Две группы циркона представлены единичными зернами с датировками в интервалах 1695 ± 31–1347 ± 34 млн лет и 1289 ± 55–974 ± 10 млн лет.

Наибольшее количество зерен (79, или 86 %) представляет интервал 654 ± 7–479 ± 7 млн лет. В пределах этого интервала можно выделить неопротерозойскую (позднерифейскую) 654 ± 7–584 ± 6 млн лет (21 зерно, или 23 %), вендско-раннекембрийскую 555 ± 6– 523 ± 5 млн лет (37 зерен, или 40 %) и позднекембрийско-раннеордовикскую 512 ± 5–479 ± 7 млн лет (21 зерно, или 23 %) популяции.

 

Обсуждение результатов

Вероятным первичным источником циркона с наиболее древней мезоархейской датировкой могли быть породы, принимающие участие в строении кристаллического фундамента волго-уральской и сарматской частей древнего остова Восточно-Европейской платформы, а зерна с возрастами 2379 ± 26, 1951 ± 42 и 1924 ± 29 млн лет первоначально связаны с синметаморфическими гранитоидами, внедрением которых сопровождались процессы формирования Волго-Сарматского орогена [4, 14]. Древние, хорошо окатанные зерна циркона могли быть неоднократно переотложенными и могли попасть в алькесвожские метапесчаники из рифейских метатерригенных пород [11]. Три наиболее древних зерна циркона имеют высокие значения Th/U (1.41, 0.94 и 1.09 соответственно), свойственные породам высокой степени метаморфизма. Циркон с возрастами, попадающими в интервалы 1695 ± 31–1347 ± 34 млн лет и 1289 ± 55–974 ± 10 млн лет, могли произойти из комплексов, участвовавших в строении аккреационно-коллизионного Свеко-Норвежского мегаблока Балтийского щита [14]. Все цирконы с донеопротерозойскими датировками представлены хорошо окатанными изометричными или овальными зернами размером 100–200 µm (рис. 3, а, c). В СL-изо­бражении для них характерна пятнистая окраска в различных оттенках серого цвета со слабо проявленной зональностью (рис. 3, b, d).

Наибольшее количество зерен (79 или 86 %) представляет интервал 654 ± 7–479 ± 7 млн лет. Источником циркона с возрастом 654 ± 7–584 ± 6 млн лет могли быть комплексы протоуралид-тиманид, слагающие реликты Протоуральско-Тиманского орогена, возникшего в результате континентальной коллизии пассивной окраины Балтики и активной окраины Арктиды [5], — широко распространенные в районе вулканиты нижней подсвиты саблегорской свиты и прорывающие их тела базиты манарагского (bRF3–V) комплекса. В этой популяции широко представлены короткопризматические, в том числе с развитыми дипирамидами, суб­идиоморфные кристаллы с зональным внутренним строением и часто с пятнистой окраской в СL-изо­бражении (рис. 3, e, f).

Возраст циркона наиболее многочисленной вендско-раннекембрийской популяции 555 ± 6–523 ± 5 млн лет, близок ко времени образования гранитоидов сальнерско-маньхамбовского (gV3–Є1) комплекса Малдинского и Народинского массивов [1, 8, 9]. Отмеченные у семи неокатанных кристаллов значения Th/U > 1 могут указывать на происхождение циркона из магматических пород основного состава. Такими породами могли быть поздневендско-раннекембрийские основные интрузии второй фазы сальнерско-маньхамбовского комплекса [14, 15]. Наиболее вероятным источником циркона возрастной популяции 512 ± 5–479 ± 7 млн лет с максимумом плотности вероятности 501 млн лет, составляющей 23 % от общего количества проанализированных зерен и представленной неокатанными и слабоокатанными призматическими, часто с гранями дипирамиды, кристаллами с зональным внутренним строением (рис. 3, g, h), могли быть риолиты верхней подсвиты саблегорской свиты [9]. Риолиты, в том числе измененные в коре выветривания, часто являются подстилающими породами для терригенной алькесвожской тощи, а гальки риолитов присутствуют в алькесвожских псефитах [2].

 

Заключение

Результаты проведенного датирования детритного циркона из песчаников алькесвожской толщи позволяют считать, что порода сформирована не ранее чем в позднем кембрии — раннем ордовике. Незна­чительная часть обломочного материала в составе песчаников алькесвожской толщи может происходить из рифейских метаосадочных образований, в свою очередь унаследовавших его из пород древнего фундамента Восточно-Европейской платформы. Преобла­дающая часть датировок (86 %) расположена в достаточно узком возрастном позднерифейско-позднекембрийском интервале с максимально интенсивными пиками, соответствующими времени становления эпиконтинентальных рифтогенных магматических образований. Песчаники алькесвожской толщи сформированы за счет разрушения и переотложения материала подстилающих (или очень близко расположенных) магматических комплексов различных стадий формирования тиманид-протоуралид. Наиболее вероятными поставщиками неокатанного и слабоокатанного верхнерифейско-раннекембрийского циркона были широко распространенные на Приполярном Урале, близкие по времени образования кислые и основные вулканиты саблегорской свиты, ассоциирующие с ними гранитоиды и интрузивные образования. Кластогенное золото могло поступать в породы алькесвожской толщи в результате размыва грейзенизированных пород, в частности на контактах основных интрузий манарагского комплекса и риолитов саблегорской свиты и коры выветривания по этим породам.

Список литературы

1. Белякова Л. Т. Байкальская вулканогенная моласса севера Урала и большеземельской тундры / Советская геология. 1982. № 10. С. 68-78.

2. Государственная геологическая карта Российской Федерации. Масштаб 1 : 200 000. Серия Северо-Уральская. Лист Q-41-XXV. Объяснительная записка. М.: МФ ВСЕГЕИ. 2013. 252 с.

3. Ефанова Л. И., Повонская Н. В. Алькесвожская толща хребта Малдынырд (Приполярный Урал) // Народное хозяйство Республики Коми. 1999. № 3. С. 470-485.

4. Кузнецов Н. Б., Алексеев А. С., Белоусова Е. А. и др. Тестирование моделей поздневендской эволюции северо-восточной периферии Восточно-Европейской платформы на основе первых результатов U/Pb-изотопного датирования (LA-ICP-MS) детритных цирконов из верхневендских песчаников Юго-Восточного Беломорья / Докл. АН. 2014. Т. 458. № 3. С. 313-317.

5. Кузнецов Н. Б., Соболева А. А., Удоратина О. В. и др. Доуральская тектоническая эволюция северо-восточного и восточного обрамления Восточно-Европейской платформы. Ст. 1. Протоуралиды, тиманиды и доордовикские гранитоидные вулкано-плутонические ассоциации севера Урала и Тимано-Печорского региона // Литосфера. 2006. № 4. С. 3-22.

6. Кузнецов Н. Б., Соболева А. А., Удоратина О. В. и др. Доуральская тектоническая эволюция северо-восточного и восточного обрамления Восточно-Европейской платформы. Ст. 2. Позднедокембрийско-кембрийская коллизия Балтики и Арктиды // Литосфера. 2007. № 1. С. 32-45.

7. Озеров В. С. Метаморфизованные россыпи золота Приполярного Урала // Руды и металлы. 1996. № 4. С. 28-37.

8. Соболева А. А. Новые данные о возрасте Народинского массива (Приполярный Урал) // Вестник Института геологии. Сыктывкар. 2004. № 4. С. 2

9. Соболева А. А. Результаты U-Pb (SIMS)-датирования циркона из гранитов и риолитов хр. Малдынырд, Приполярный Урал // Современные проблемы теоретической, экспериментальной и прикладной минералогии (Юшкинские чтения - 2020): Материалы российской конференции с международным участием. Сыктывкар: ИГ Коми НЦ УрО РАН, 2020. С. 63-65.

10. Сорока Е. И., Рябинин В. Ф., Сазонов В. Н. и др. Трансформация пород Малдинского липаритового комплекса под воздействием многоэтапной коллизии // Ежегодник. 1994: ИГГ УрО РАН. Екатеринбург, 1995. С. 97-100.

11. Пыстин А. М., Пыстина Ю. И. Докембрий Приполяр­ного Урала: хроностратиграфический аспект // Труды Карельского научного центра РАН. 2019. № 2. С. 34-52. DOI: http://dx.doi.org/10.17076/geo904.

12. Удоратина О. В., Соболева А. А., Кузенков Н. А. и др. Возраст гранитоидов Маньхамбовского и Ильяизского массивов (Северный Урал): U-Pb-данные // ДАН. 2006. Т. 406. № 6. С. 810-815.

13. Хубанов В. Б., Буянтуев М. Д., Цыганков А. А. U-Pb-изотопное датирование цирконов из pz 3-mz-магматических комплексов Забайкалья методом магнитно-секторной масс-спектрометрии с лазерным пробоотбором: процедура определения и сопоставление с SHRIMP-данными // Геология и геофизика. 2016. Т. 57. № 1. C. 241-258.

14. Bogdanova S. V., Bingen B., Gorbatschev R., et al. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Res. 2008; V.160. pp. 23-45.

15. Stacey J. S., Kramers J. D. Approximation of terrestrial lead isotope evolution by a two-stage model / Earth and Planetary Science Letters. 1975. V. 26 (2). P. 207-221.

16. Williams I. S. U-Th-Pb geochronology by ion microprobe. In: M. A. McKibben, W. C. Shanks III, W. I. Ridley (Eds.) /Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology Special Publication. 1998. V. 7. P. 1-35.

Войти или Создать
* Забыли пароль?