Historical development and cutting-edge applications of enzymes: a review
Abstract and keywords
Abstract (English):
The use of enzymes as natural catalysts is gaining a significant industrial traction because of their environmental compatibility and high efficiency compared to the conventional methods. This review outlines the trajectory of this field of research, from its beginnings to its current state, which is characterised by advances in enzyme fine-tuning and directed evolution. Scientific papers for this review have been selected using keywords related to cellulolytic and ligninolytic enzymes, bacterial and fungal strains, and the use of industrial waste as nutrient media for enzyme producers. Cutting-edge examples of enzyme applications in industry are demonstrated.

Keywords:
enzymes, lignocellulose waste, bacteria, fungi, nutrient media, industrial production
Text
Text (PDF): Read Download
References

1. Microbial lignocellulolytic enzymes for the effective valorization of lignocellulosic biomass: a review / P. Nargotra, V. Sharma, Y.-C. Lee [et al.] // Catalysts. – 2022. – Vol. 13. – P. 83. – DOI:https://doi.org/10.3390/catal13010083

2. Current perspective on production and applications of microbial cellulases: a review / N. Bhardwaj, B. Kumar, K. Agrawal [et al.] // Bioresources and Bioprocessing. – 2021. – Vol. 8. – P. 95. – DOI:https://doi.org/10.1186/s40643-021-00447-6

3. Ejaz, U. Cellulases: from bioactivity to a variety of industrial applications / U. Ejaz, M. Sohail, A Ghanemi // Biomimetics. – 2021. – Vol. 6. – P. 44. – DOI:https://doi.org/10.3390/biomimetics6030044

4. Chauhan, A. K. Synthetic dyes degradation using lignolytic enzymes produced from Halopiger aswanensis strain ABC_IITR by solid state fermentation / A. K. Chauhan, B. Choudhury // Chemosphere. – 2021. – Vol. 273. – P. 12967. – DOI:https://doi.org/10.1016/j.chemosphere.2021.129671

5. Comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges / H. El-Gendi, A. K. Saleh, R. Badierah [et al.] // Journal of Fungi. – 2021. – Vol. 8. – P. 23. – DOI:https://doi.org/10.3390/jof8010023

6. Saxena, S. Microbial enzymes and their industrial applications / S. Saxena // Applied Microbiology. – New Delhi : Springer, 2015. – P. 121–154. – DOI:https://doi.org/10.1007/978-81-322-2259-0_9

7. Abramova, Z. I. Biohimiya: fermenty i kofermenty [Biochemistry: enzymes and coenzymes] : Textbook. Part 2 / Z. I. Abramova. – Kazan : KFU, 2021. – 246 p.

8. Buchholz, K. Enzyme technology: history and current trends: innovations and future directions / K. Buchholz, U. T. Bornscheuer // Applied Bioengineering. – [S. l.] : [s. n.], 2017. – P. 11–46. – DOI:https://doi.org/10.1002/9783527800599.ch2

9. Slagman, S. Biocatalytic routes to anti-viral agents and their synthetic intermediates / S. Slagman, W. D. Fessner // Chemical Society Reviews. – 2021. – Vol. 50, № 3. – P. 1968–2009. – DOI:https://doi.org/10.1039/D0CS00763C

10. Nazor, J. Enzyme evolution for industrial biocatalytic cascades / J. Nazor, J. Liu, G. Huisman // Current Opinion in Biotechnology. – 2021. – Vol. 69. – P. 182–190. – DOI:https://doi.org/10.1016/j.copbio.2020.12.013

11. Lignocellulose degradation in bacteria and fungi: cellulosomes and industrial relevance / K.-T. Hsin, H. Lee, Y.-C. Huang [et al.] // Frontiers in Microbiology. – 2025. – Vol. 16. –P. 1583746. – DOI:https://doi.org/10.3389/fmicb.2025.1583746

12. Weimer, P. J. Degradation of cellulose and hemicellulose by ruminal microorganisms / P. J. Weimer // Microorganisms. – 2022. – Vol. 10. – P. 2345. – DOI:https://doi.org/10.3390/microorganisms10122345

13. Wood decay fungi: an analysis of worldwide research / T. Li, L. Cui, X. Song [et al.] // Journal of Soils and Sediments. – 2022. – Vol. 22. – P. 1688–1702. – DOI:https://doi.org/10.1007/s11368-022-03225-9

14. Bhardwaj, N. A detailed overview of xylanases: an emerging biomolecule for current and future prospective / N. Bhardwaj, B. Kumar, P. Verma // Bioresources and Bioprocessing. – 2019. – Vol. 6. – P. 276. – DOI:https://doi.org/10.1186/s40643-019-0276-2

15. Datta, R. Enzymatic degradation of cellulose in soil: a review / R. Datta // Heliyon. – 2024. – Vol. 10. – e24022. – DOI:https://doi.org/10.1016/j.heliyon.2024.e24022

16. Biochemical characterization of an endoglucanase GH7 from thermophile Thermothielavioides terrestris expressed on aspergillus nidulans / R. C. Alnoch, J. C. S. Salgado, G. S. Alves [et al.] // Catalysts. – 2023. – Vol. 13. – P. 582. – DOI:https://doi.org/10.3390/catal13030582

17. Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass / K. Hirano, M. Kurosaki, S. Nihei [et al.] // Scientific Reports. – 2016. – Vol. 6. – P. 35709. – DOI:https://doi.org/10.1038/srep35709

18. Puchart, V. Xylanases of glycoside hydrolase family 30 – an overview / V. Puchart, K. Šuchová, P. Biely // Biotechnology Advances. – 2021. – Vol. 47. – P. 107704. – DOI:https://doi.org/10.1016/j.biotechadv.2021.107704

19. Dawood, A. Applications of microbial beta-mannanases / A. Dawood, K. Ma // Frontiers in Bioengineering and Biotechnology. – 2020. – Vol. 8. – P. 598630. – DOI:https://doi.org/10.3389/fbioe.2020.598630

20. Carbohydrate-active enzymes in Pythium and their role in plant cell wall and storage polysaccharide degradation // M. M. Zerillo, B. N. Adhikari, J. P. Hamilton [et al.] // PLoS One. – 2013. – Vol. 8. – P. e72572. – DOI:https://doi.org/10.1371/journal.pone.0072572

21. An overview of recent developments in hetero-catalytic conversion of cellulosic biomass / L. Ward, M. S. Islam, N. Kao [et al.] // Research Communication in Engineering Science and Technology. – 2020. – Vol. 4. – P. 43–54. – DOI:https://doi.org/10.22597/rcest.v4.65

22. A parts list for fungal cellulosomes revealed by comparative genomics / C. H. Haitjema, S. P. Gilmore, J. K. Henske [et al.] // Nature Microbiology. – 2017. – Vol. 2. – P. 17087. – DOI:https://doi.org/10.1038/nmicrobiol.2017.87

23. The hydrolysis mechanism of a GH45 cellulase and its potential relation to lytic transglycosylase and expansin function / V. S. Bharadwaj, B. C. Knott, J. Ståhlberg [et al.] // Journal of Biological Chemistry. – 2020. – Vol. 295. – P. 4477–4487. – DOI:https://doi.org/10.1074/jbc.RA119.011406

24. Ioelovich, M. Preparation, characterization and application of amorphized cellulose – a review / M. Ioelovich // Polymers. – 2021. – Vol. 13. – P. 4313. – DOI:https://doi.org/10.3390/polym13244313

25. Higuchi, T. Microbial degradation of lignin: role of lignin peroxidase, manganese peroxidase, and laccase / T. Higuchi // The Proceedings of the Japan Academy. Series B. – 2004. – Vol. 80. – P. 204–214. – DOI:https://doi.org/10.2183/pjab.80.204

26. Semana, P. Four aromatic intradiol ring cleavage dioxygenases from Aspergillus niger / P. Semana, J. Powlowski // Applied Environmental Microbiology. – 2019. – Vol. 85. – P. 1786. – DOI:https://doi.org/10.1128/AEM.01786-19

27. Li, X. Biotransformation of lignin: mechanisms, applications and future work / X. Li, Y. Zheng // Biotechnology Progress. – 2020. – Vol. 36. – P. e2922. – DOI:https://doi.org/10.1002/btpr.2922

28. Effective bioremediation of pulp and paper mill wastewater using Bacillus cereus as a possible kraft lignin-degrading bacterium / R. Kumar, A. Singh, A. Maurya [et al.] // Bioresource Technology. – 2022. – Vol. 352. – P. 127076. – DOI:https://doi.org/10.1016/j.biortech.2022.127076

29. Potential of lignocellulolytic actinomycete isolates in the degradation of rice straw / M. Chauhan, S. Kumar, M. M. Rather [et al.] // Hazardous Chemicals: Overview, Toxicological Profile, Challenges, and Future Perspectives. – Hazardous Chemicals. – 2025. – P. 743–754. – DOI:https://doi.org/10.1016/B978-0-323-95235-4.00003-7

30. Biotechnological importance of Actinomycetes / M. H. Kontro, J. S. Yaradoddi, N. R. Banapurmath [et al.] // Actinobacteria. Rhizosphere Biology. – Singapore : Springer, 2021. – P. 271–290. – DOI:https://doi.org/10.1007/978-981-16-3353-9_15

31. A review on bacterial contribution to lignocellulose breakdown into useful bio-products / O. B. Chukwuma, M. Rafatullah, H. A. Tajarudin [et al.] // International Journal of Environmental Research and Public Health. – 2021. – Vol. 18. – P. 6001. – DOI:https://doi.org/10.3390/ijerph18116001

32. Nakamura, S. Decomposition of rice chaff using a cocultivation system of Thermobifida fusca and Ureibacillus thermosphaericus / S. Nakamura, N. Kurosawa // Proceedings. – 2021. – Vol. 66, № 1. – P. 31. – DOI:https://doi.org/10.3390/proceedings2020066031

33. Thermophilic fungi and their enzymes for biorefineries / A. Sharma, A. Sharma, S. Singh [et al.] // Fungi in Extreme Environments: Ecological Role and Biotechnological Significance / ed. by S. Tiquia-Arashiro, M. Grube. – Cham : Springer, 2019. – P. 479–502. – DOI:https://doi.org/10.1007/978-3-030-19030-9_24

34. Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives / S. Lee, M. Kang, J.-H. Bae [et al.] // Frontiers in Bioengineering and Biotechnology. – 2019. – Vol. 7. – P. 209. – DOI:https://doi.org/10.3389/fbioe.2019.00209

35. Xie, S. Lignin conversion: opportunities and challenges for the integrated biorefinery / S. Xie, A. J. Ragauskas, J. S. Yuan // Industrial Biotechnology. – 2016. – Vol. 12. – P. 161–167. – DOI:https://doi.org/10.1089/ind.2016.0007

36. Lignin depolymerization and utilization by bacteria / R. Xu, K. Zhang, P. Liu [et al.] // Bioresource Technology. – 2018. – Vol. 269. – P. 557–566. – DOI:https://doi.org/10.1016/j.biortech.2018.08.118

37. Nocardia rosealba sp. nov., a novel ligninase-producing Actinobacterium isolated from soil / Z. Huang, C. He, Z. Wang [et al.] // International Journal of Systematic and Evolutionary Microbiology. – 2022. – Vol. 72, № 6. – P. 005416. – DOI:https://doi.org/10.1099/ijsem.0.005416

38. Prospects of Pseudomonas in microbial fuel, bioremediation, and sustainability / Y. J. Song, N. L. Zhao, D. R. Dai [et al.] // ChemSusChem. – 2025. – Vol. 18, № 2. – P. e202401324. – DOI:https://doi.org/10.1002/cssc.202401324

39. Kraft lignin decomposition by lignin-derived aromatic compound degrader Rhodococcus sp. DK17 / D. Kim, M. Kim, H.-W. Kim [et al.] // World Journal of Microbiology and Biotechnology. – 2025. – Vol. 41. – P. 127. – DOI:https://doi.org/10.1007/s11274-025-04350-6

40. Hydroxyl radicals production via quinone redox cycling by the ligninolytic bacteria Streptomyces cyaneus and its effectiveness to degrade kraft lignin / J. M. Molina-Guijarro, F. Guillén, J. Rodríguez [et al.] // Wood Science and Technology. – 2025. – Vol. 59. – P. 44. – DOI:https://doi.org/10.1007/s00226-025-01643-9

41. Zhou, Q. Lignin-degrading enzymes and the potential of Pseudomonas putida as a cell factory for lignin degradation and valorization / Q. Zhou, A. Fransen, H. de Winde // Microorganisms. – 2025. – Vol. 13. – P. 935. – DOI:https://doi.org/10.3390/microorganisms13040935

42. Metagenomic insights into the lignocellulose degradation mechanism during short-term composting of peach sawdust: core microbial community and carbohydrate-active enzyme profile analysis / W. W. Zhang, Y. X. Guo, Q. J. Chen [et al.] // Environmental Technology and Innovation. – 2025. – Vol. 37. – P. 103959. – DOI:https://doi.org/10.1016/j.eti.2024.103959

43. Enhancing composting efficiency of horticultural residues through wheat straw addition: microbial mechanisms driving metabolic heat generation / Y. Hu, H. Li, B. Tian [et al.] // Journal of Environmental Management. – 2025. – Vol. 377. – P. 124632. – DOI:https://doi.org/10.1016/j.jenvman.2025.124632

44. Benatti, A. L. T. Lignocellulolytic biocatalysts: the main players involved in multiple biotechnological processes for biomass valorization / A. L. T. Benatti, M. L. T. M. Polizeli // Microorganisms. – 2023. – Vol. 11, № 1. – P. 162. – DOI:https://doi.org/10.3390/microorganisms11010162

45. Zoghlami, A. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis / A. Zoghlami, G. Paës // Frontiers in Chemistry. – 2019. – Vol. 7. – DOI:https://doi.org/10.3389/fchem.2019.00874

46. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution / G. Janusz, A. Pawlik, J. Sulej [et al.] // FEMS Microbiology Reviews. – 2017. – Vol. 41. – P. 941–962. – DOI:https://doi.org/10.1093/femsre/fux049

47. Applications of white rot fungi in bioremediation with nanoparticles and biosynthesis of metallic nanoparticles / K. He, G. Chen, G. Zeng [et al.] // Applied Microbiology and Biotechnology. – 2017. – Vol. 101. – P. 4853–4862. – DOI:https://doi.org/10.1007/s00253-017-8328-z

48. Pathways for degradation of lignin in bacteria and fungi / T. D. H. Bugg, M. Ahmad, E. M. Hardiman [et al.] // Nature Product Reports. – 2011. – Vol. 28. – P. 1883–1896. – DOI:https://doi.org/10.1039/c1np00042j

49. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism / N. Kamimura, K. Takahashi, K. Mori [et al.] // Environmental Microbiology Reports. – 2017. – Vol. 9. – P. 679–705. – DOI:https://doi.org/10.1111/1758-2229.12597

50. Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing / D. J. Levy-Booth, L. E. Navas, M. M. Fetherolf [et al.] // ISME Journal. – 2022. – Vol. 16. – P. 1944–1956. – DOI:https://doi.org/10.1038/s41396-022-01241-8

51. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing / R. C. Wilhelm, R. Singh, L. D. Eltis [et al.] // ISME Journal. – 2019. – Vol. 13. – P. 413–429. – DOI:https://doi.org/10.1038/s41396-018-0279-6

52. Singh, N. Secretomics of wood-degrading fungi and anaerobic rumen fungi associated with biodegradation of recalcitrant plant biomass / N. Singh, J. Singh // Recent Advancement in White Biotechnology Through Fungi. Fungal Biology / ed. by A. Yadav, S. Singh, S. Mishra, A. Gupta. – Cham : Springer, 2019. – P. 1–16. – DOI:https://doi.org/10.1007/978-3-030-25506-0_1

53. Gilbertson, R. L. Wood-rotting fungi of North America / R. L. Gilbertson // Mycologia. – 1980. – Vol. 72, № 1. – P. 1–49. – DOI:https://doi.org/10.1080/00275514.1980.12021153

54. Arantes, V. Current understanding of brown-rot fungal biodegradation mechanisms: a review / V. Arantes, B. Goodell // Deterioration and protection of sustainable biomaterials. – 2014. – P. 3–21. – DOI:https://doi.org/10.1021/bk-2014-1158.ch001

55. Evolutionary dynamics of host specialization in wood-decay fungi / F. S. Krah, C. Bässler, C. Heibl [et al.] // BMC Evolutionary Biology. – 2018. – Vol. 18. – P. 119. –DOI:https://doi.org/10.1186/s12862-018-1229-7

56. Characterisation of the initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brownrot fungus Coniophora puteana / I. Irbe, I. Andersone, B. Andersons [et al.] // Biodegradation. – 2011. – Vol. 22. – P. 719–728. – DOI:https://doi.org/10.1007/s10532-010-9449-6

57. Transcriptomic insights into the degradation mechanisms of Fomitopsis pinicola and its host preference for coniferous over broadleaf deadwood / J. Xue, Y. Wei, L. Chen [et al.] // Microorganisms. – 2025. – Vol. 13. – P. 1006. – DOI:https://doi.org/10.3390/microorganisms13051006

58. Kamei, I. Wood-rotting fungi for biofuel production / I. Kamei // Fungi in Fuel Biotechnology. Fungal Biology / ed. by G. Salehi Jouzani, M. Tabatabaei, M. Aghbashlo. – Cham : Springer, 2020. – P. 123–147. – DOI:https://doi.org/10.1007/978-3-030-44488-4_6

59. Molecular breeding of lignin-degrading brown-rot fungus Gloeophyllum trabeum by homologous expression of laccase gene / M. Arimoto, K. Yamagishi, J. Wang [et al.] // AMB Express. – 2015. – Vol. 5. – P. 81. – DOI:https://doi.org/10.1186/s13568-015-0173-9

60. Outdoor wood mats-based engineering composite: influence of process parameters on decay resistance against wood-degrading fungi Trametes versicolor and Gloeophyllum trabeum / M. Bao, N. Li, Y. Bao [et al.] // Polymers. – 2021. – Vol. 13. – P. 3173. – DOI:https://doi.org/10.3390/polym13183173

61. Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass / B. Bissaro, A. Várnai, Å. K. Røhr [et al.] // Microbiology and Molecular Biology Reviews. – 2018. – Vol. 82. – P. e00029–18. – DOI:https://doi.org/10.1128/MMBR.00029-18

62. Lignin-enzyme interactions in the hydrolysis of lignocellulosic biomass / A. C. dos Santos, E. Ximenes, Y. Kim [et al.] // Trends in Biotechnology. – 2018. – S0167–7799. – P. 30306–30308. – DOI:https://doi.org/10.1016/j.tibtech.2018.10.010

63. Recent advances in synthesis and degradation of lignin and lignin nanoparticles and their emerging applications in nanotechnology / V. K. Yadav, N. Gupta, P. Kumar [et al.] // Materials. – 2022. – Vol. 15. – P. 953. – DOI:https://doi.org/10.3390/ma15030953

64. Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping / T. Cui, B. Yuan, H. Guo [et al.] // Biotechnology for Biofuels. – 2021. – Vol. 14. – P. 162. – DOI:https://doi.org/10.1186/s13068-021-02011-y

65. Characterizing fungal decay of beech wood: potential for biotechnological applications / E. Bari, K. Ohno, N. Yilgor [et al.] // Microorganisms. – 2021. – Vol. 9. – P. 247. – DOI:https://doi.org/10.3390/microorganisms9020247

66. Ferrari, R. Lignin degradation by ascomycetes / R. Ferrari, V. Gautier, P. Silar // Advances in Botanical Research / ed. by M. Morel-Rouhier, R. Sormani. – New York : Academic Press, 2021. – P. 77–113. – DOI:https://doi.org/10.1016/bs.abr.2021.05.006

67. Evidence for ligninolytic activity of the ascomycete fungus Podospora anserine / G. van Erven, A. F. Kleijn, A. Patyshakuliyeva [et al.] // Biotechnology for Biofuels. – 2020. – Vol. 13. – P. 75. – DOI:https://doi.org/10.1186/s13068-020-01713-z

68. Bacterial enzymes involved in lignin degradation / G. de Gonzalo, D. I. Colpa, M. H. Habib [et al.] // Journal of Biotechnology. – 2016. – Vol. 236. – P. 110–119. – DOI:https://doi.org/10.1016/j.jbiotec.2016.08.011

69. The bacterial degradation of lignin – a review / D. Grgas, M. Rukavina, D. Bešlo [et al.] // Water. – 2023. – Vol. 15. – P. 272. – DOI:https://doi.org/10.3390/w15071272

70. Christopher, L. P. Lignin biodegradation with laccase-mediator systems / L. P. Christopher, B. Yao, Y. Ji // Frontiers in Energy Research. – 2014. – Vol. 2. –P. 12. – DOI:https://doi.org/10.3389/fenrg.2014.00012

71. Lignocellulose degradation mechanisms across the tree of life / S. M. Cragg, G. T. Beckham, N. C. Bruce [et al.] // Current Opinion in Chemical Biology. – 2015. – Vol. 29. – P. 108–119. – DOI:https://doi.org/10.1016/j.cbpa.2015.10.018

72. Wood decay fungi and their bacterial interaction partners in the built environment – a systematic review on fungal bacteria interactions in dead wood and timber / J. Embacher, S. Zeilinger, M. Kirchmair [et al.] // Fungal Biology Reviews. – 2023. – Vol. 45. – P. 100305. – DOI:https://doi.org/10.1016/j.fbr.2022.100305

73. Effect of cultivation conditions on mycelial growth and antibacterial activity of Lentinula edodes and Fomitopsis betulina / T. A. Krupodorova, V. Yu. Barshteyn, T. O. Kizitska [et al.] // Czech Mycology. – 2019. – Vol. 71, № 2. – P. 167–186. – DOI:https://doi.org/10.33585/cmy.71204

74. Effects of cultivation parameters on intracellular polysaccharide production in submerged culture of the edible medicinal mushroom Lentinula edodes / N. Bisko, K. Mustafin, G. Al-Maali [et al.] // Czech Mycology. – 2020. – Vol. 72, № 1. – P. 1–17. – DOI:https://doi.org/10.33585/cmy.72101

75. Krupodorova, T. A. Review of the basic cultivation conditions influence on the growth of basidiomycetes / T. A. Krupodorova, V. Y. Barshteyn, A. S. Sekan // Current Research in Environmental and Applied Mycology. – 2021. – Vol. 11, № 1. – P. 494–531. – DOI:https://doi.org/10.5943/cream/11/1/34

76. Mushroom strains able to grow at high temperatures and low pH values / S. A. Furlan, L. J. Virmond, D. A. Miers [et al.] // World Journal of Microbiology & Biotechnology. – 1997. – Vol. 13. – P. 689–692. – DOI:https://doi.org/10.1023/A:1018579123385

77. Salmones, D. Cultivation of Mexican wild strains of Agaricus bisporus, the button mushroom, under different growth conditions in vitro and determination of their productivity / D. Salmones, R. Gaitan-Hernandez, G. Mata // Biotechnology, Agronomy and Society and Environment. – 2018. – Vol. 22, № 1. – P. 45–53. – DOI:https://doi.org/10.25518/1780-4507.16281

78. Optimization of culture conditions for mycelial growth and basidiocarp production of Cyclocybe cylindracea (Maire) / H. R. R. Landingin, B. E. Francisco, R. M. R. Dulay [et al.] // CLSU International Journal of Science and Technology. – 2020. – Vol. 4, № 1. – P. 1–17. – DOI:https://doi.org/10.22137/ijst.2020.v4n1.01

79. Effect of different agro-wastes, casing materials and supplements on the growth, yield and nutrition of milky mushroom (Calocybe indica) / H. Sardar, M. A. Anjum, A. Nawaz [et al.] // Folia Horticulturae. – 2020. – Vol. 32, № 1. – P. 115–124. – DOI:https://doi.org/10.2478/fhort-2020-0011

80. Influence of nutritional and climatic conditions on mycelial growth of three oyster mushroom strains / N. H. Abdel Aziz, N. S. Yousef, M. E. El-Haddad [et al.] // Arab Universities Journal of Agricultural Sciences. – 2018. – Vol. 26, № 2A. – P. 1165–1173. – DOI:https://doi.org/10.21608/ajs.2018.28368

81. Effect of different media, pH and temperature on growth of Pleurotus ostreatus / A. Pant, V. Kumar, S. S. Bisht [et al.] // Journal of Bio Innovation. – 2020. – Vol. 9, № 2. – P. 132–140.

82. Optimization of culture conditions for mycelial growth and fruiting body production of naturally-occurring Philippine mushroom Lentinus swartzii Berk. / R. M. R. Dulay, E. C. Cabrera, S. P. Kalaw [et al.] // Journal of Applied Biology and Biotechnology. – 2021. – Vol. 9, № 3. – P. 17–25. – DOI:https://doi.org/10.7324/JABB.2021.93038

83. Cultural and physiological studies on wild mushroom specimens of Schizophyllum commune and Lentinula edodes / B. P. K. Reddy, A. U. Rajashekhar, P. Harikrishna [et al.] // International Journal of Current Microbiology and Applied Sciences. – 2017. – Vol. 6, № 7. – P. 2352–2357. – DOI:https://doi.org/10.20546/ijcmas.2017.607.278

84. Hoa, H. T. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus) / H. T. Hoa, C. L. Wang // Mycobiology. – 2015. – Vol. 43, № 1. – P. 14–23. – DOI:https://doi.org/10.5941/myco.2015.43.1.14

85. Mycelial growth of the edible wild mushrooms Floccularia luteovirens in different culture mediums and pH / Y. Arana-Gabriel, C. Burrola-Aguilar, A. Alcala-Adan [et al.] // Agro Productividad. – 2020. – Vol. 13, № 10. – P. 33–38. – DOI:https://doi.org/10.32854/agrop.v13i10.1745

86. Current insights in fungal importance – a comprehensive review / V. M. Corbu, I. Gheorghe-Barbu, A. Ș. Dumbravă Adan [et al.] // Microorganisms. – 2023. – Vol. 11, № 6. – P. 1384. – DOI:https://doi.org/10.3390/microorganisms11061384

87. Effects of supplementation of sea buckthorn press cake on mycelium growth and polysaccharides of Inonotus obliquus in submerged cultivation / G. Beltrame, J. Hemming, H. Yang [et al.] // Journal of Applied Microbiology. – 2021 – № 131 (3). –P. 1318–1330. – DOI:https://doi.org/10.1111/jam.15028

88. Akinyele, B. J. Effect of agrowastes, pH and temperature variation on the growth of Volvariella volvacea / B. J. Akinyele, F. C. Adetuyi // African Journal of Biotechnology. – 2005. – Vol. 4, № 12. – P. 1390–1395.

89. Teoh, Y. P. Effect of temperature on Schizophyllum commune growth and 4Hpyran-4-one,2,3-dihydro-3, 5-dihydroxy-6-methyl- production using a bubble column bioreactor / Y. P. Teoh, M. M. Don // Chiang Mai Journal of Science. – 2016. – Vol. 43, № 3. – P. 461–468.

90. Influence of temperature and pH on mycelial growth and chlamydospore production of paddy straw mushroom Volvariella volvaceae (Bull. Ex Fr.) / N. K. Kumar, A. S. Krishnamoorthy, A. Kamalakannan [et al.] // The Journal of Research ANGRAU. – 2016. – Vol. 44 (1–2). – P. 1–7.

91. Rosnan, N. D. First record of in vitro growth evaluation of wild mushroom, Schizophyllum commune from Pulau Kapas in Malaysia / N. D. Rosnan, N. Chuen, A. A. Ngadin // Asian Journal of Agriculture and Biology. – 2019. – Vol. 7, № 4. – P. 602–609.

92. Optimization of mycelia growth parameters for wild white rot fungi Trametes elegans and Trametes versicolor / S. Sagar, M. Thakur, I. Sharma [et al.] // Asia Life Sciences. – 2020. – Vol. 12, № 1. – P. 5–14.

93. Effect of cultural variability on mycellial growth of eleven mushroom isolates of Pleurotus spp. / M. V. Phadke, A. C. Jadhav, M. C. Dhavale [et al.] // Journal of Pharmacognosy and Phytochemistry. – 2020. – Vol. 9, № 6. – P. 881–888.

94. Studies on optimization of culture conditions and medium components for the production of mycelial biomass of Auricularia delicata under submerged fermentation / M. S. Jacob, L. Xiao, M. F. Stephano [et al.] // Asian Journal of Biology. – 2020. – Vol. 10, № 4. – P. 56–67.

95. Elisashvili, V. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review) / V. Elisashvili // International Journal of Medicinal Mushrooms. – 2012. – Vol. 14, № 3. – P. 211–239.

96. Effect of physicochemical components on mycelial growth of Agaricus bisporus – a popular edible mushroom / M. Ismail, G. Kibriya, J. Hossain [et al.] // Plant Environment Development. – 2016. – Vol. 5, № 1. – P. 7–12.

97. Culture characteristics and optimal conditions for mycelial growth of Calocybe indica / G. J. Min, H. S. Park, E. J. Lee [et al.] // Korean Journal of Mycology. – 2020. – Vol. 48, № 3. – P. 273–284. – DOI:https://doi.org/10.4489/KJM.20200027

98. Aminah, M. H. S. Influence of pH and temperature on in vitro mycelial growth performance of wild edible Schizophyllum commune of northern Malaysia / M. H. S. Aminah, S. T. Sam, Z. Zakaria // AIP Conference Proceedings. – 2020. – Vol. 2291. – P. 020100. – DOI:https://doi.org/10.1063/5.0023889

99. Sravani, B. Influence of media, pH and temperature on the growth of Sclerotium rolfsii (Sacc.) causing collar rot of chickpea / B. Sravani, R. Chandra // Journal of Pharmacognosy and Phytochemistry. – 2020. – Vol. 9, № 1. – P. 174–178.

100. The influence of carbon and nitrogen sources in nutrient media on biomass accumulation by basidiomycetes medicinal mushrooms genus Trametes (Fr.) / I. R. Klechak, N. A. Bisko, N. Y. Mytropolska [et al.] // Naukovi Visti NTUU KPI. – 2014. – Vol. 3. – P. 52–57.

101. Lazarević, J. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest / J. Lazarević, D. Stojičić, N. Keča // Forest Systems. – 2016. – Vol. 25, № 1. – P. e048. – DOI:https://doi.org/10.5424/fs/2016251-07036

102. Suitable conditions for mycelial growth of Phellinus spp. / H. Hur, A. Imtiaj, M. W. Lee [et al.] // Mycobiology. – 2008. – Vol. 36, № 3. – P. 152–156.

103. Pekşen, A. Determination of optimum culture conditions for mycelial growth of Macrolepiota procera mushroom / A. Pekşen, B. Kibar // Acta Scientiarum Polonorum Hortorum Cultus. – 2020. – Vol. 19, № 1. – P. 11– 20. – DOI:https://doi.org/10.24326/asphc.2020.1.2

104. Culture conditions for the mycelial growth of Ganoderma applanatum / W. S. Jo, Y. J. Cho, D. H. Cho [et al.] // Mycobiology. – 2009 – Vol. 37, № 2. – P. 94–102. – DOI:https://doi.org/10.4489/myco.2009.37.2.094

105. The culture conditions for the mycelial growth of Auricularia auricula-judae / W. S. Jo, D. G. Kim, S. J. Seok [et al.] // Journal of Mushroom. – 2014. – Vol. 12, № 2. – P. 88–95. – DOI:https://doi.org/10.14480/JM.2014.12.2.88

106. The optimal culture conditions for the mycelial growth of Oudemansiella radicata / S. B. Kim, S. H. Kim, K. R. Lee [et al.] // Mycobiology. – 2005. – Vol. 33, № 4. – P. 230–234. – DOI:https://doi.org/10.4489/MYCO.2005.33.4.230

107. Ma, Y. Biological characteristics for mycelial growth of Agaricus bisporus / Y. Ma, C. Y. Guan, X. J. Meng // Applied Mechanics and Materials. – 2014. – Vol. 508. – P. 297–302.

108. Yazıcı, S. Ö. Optimization for coproduction of protease and cellulase from Bacillus subtilis M-11 by the Box-Behnken design and their detergent compatibility / S. Ö. Yazıcı, I. Özmen // Brazilian Journal of Chemical Engineering. – 2020. – Vol. 37. – P. 49–59. – DOI:https://doi.org/10.1007/s43153-020-00025-x

109. Goswami, K. Purification and characterization of cellulase produced by Novosphingobium sp. CM1 and its waste hydrolysis efficiency and bio-stoning potential / K. Goswami, H. P. D. Boruah, R. Saikia // Journal of Applied Microbiology. – 2022. – Vol. 132. – P. 3618–3628. – DOI:https://doi.org/10.1111/jam.15475

110. Recombinant cellulase of Caulobacter crescentus: potential applications for biofuels and textile industries / L. Bussler, D. Jacomini, J. M. Corrêa [et al.] // Cellulose. – 2021. – Vol. 28. – P. 2813–2832. – DOI:https://doi.org/10.1007/s10570-021-03700-5

111. Impact of cellulase and lactic acid bacteria inoculant to modify ensiling characteristics and in vitro digestibility of sweet corn stover and cassava pulp silage / C. Kaewpila, S. Thip-Uten, A. Cherdthong [et al.] // Agriculture. – 2021. – Vol. 11. – P. 66. – DOI:https://doi.org/10.3390/agriculture11010066

112. An in vitro study on the role of cellulases and xylanases of Bacillus subtilis in dairy cattle nutrition / V. Bontà, M. Battelli, E. Rama [et al.] // Microorganisms. – 2024. – Vol. 12. – P. 300. – DOI:https://doi.org/10.3390/microorganisms12020300

113. Cicekler, M. Effects of cellulase enzyme in deinking of solvent-based inks from mixed office wastes / M. Cicekler, A. Tutus / Biocatalysis and Biotransformation. – 2020. – Vol. 39. – P. 152–160. – DOI:https://doi.org/10.1080/10242422.2020.1834538

114. Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste / A. Karthika, R. Seenivasagan, R. Kasimani [et al.] // Waste Management. – 2020. – Vol. 116. – P. 58–65. – DOI:https://doi.org/10.1016/j.wasman.2020.06.036

115. Combined strategies for improving the heterologous expression of a novel xylanase from Fusarium oxysporum FO47 in Pichia pastoris / C. Liu, Y. Zhang, C. Ye [et al.] // Synthetic and Systems Biotechnology. – 2024. – Vol. 9. – P. 426–435. – DOI:https://doi.org/10.1016/j.synbio.2024.03.012

116. Immobilization of xylanase on ZnO nanoparticles obtained by green synthesis from Eupatorium cannabinum L. and its application in enrichment of fruit juices / S. S. Pekdemir, B. Bakar, R. Taş [et al.] // Molecular Catalysis. – 2024. – Vol. 562. – P. 114232. – DOI:https://doi.org/10.1016/j.mcat.2024.114232

117. Expression in Pichia pastoris of thermostable endo-1,4-β-xylanase from the actinobacterium Nocardiopsis halotolerans: properties and use for saccharification of xylan-containing products / A. V. Lisov, O. V. Belova, A. A. Belov [et al.] // International Journal of Molecular Sciences. – 2024. – Vol. 25. – P. 9121. – DOI:https://doi.org/10.3390/ijms25169121

118. Xylanase treatment of eucalypt kraft pulps: effect of carryover / J. M. S. Matos, D. V. Evtuguin, A. P. Mendes de Sousa [et al.] // Applied Microbiology and Biotechnology. – 2024. – Vol. 108. – P. 210. – DOI:https://doi.org/10.1007/s00253-024-13027-3

119. Synergistic effect of cellulo-xylanolytic and laccase enzyme consortia for improved deinking of waste papers / G. K. Gupta, R. K. Kapoor, D. Chhabra [et al.] // Bioresource Technology. – 2024. – Vol. 408. – P. 131173. – DOI:https://doi.org/10.1016/j.biortech.2024.131173

120. Lignin degradation by selected fungal species / A. Knežević, I. Milovanović, M. Stajić [et al.] // Bioresource Technology. – 2013. – Vol. 138. – P. 117–123.

121. Fungal solid-state fermentation and various methods of enhancement in cellulase production / L. W. Yoon, T. N. Ang, G. C. Ngoh [et al.] // Biomass and Bioenergy. – 2014. – Vol. 67. – P. 319–338. – DOI:https://doi.org/10.1016/j.biombioe.2014.05.013

122. Enzyme activity profiles produced on wood and straw by four fungi of different decay strategies / E. Veloz, T. Mali, H. K. Mattila [et al.] // Microorganisms. – 2020. – Vol. 8, № 1. – 73. – DOI:https://doi.org/10.3390/microorganisms8010073

123. Eco-friendly bleaching of agrowaste wheat straw using crude alkalo-thermotolerant cellulase-free xylano-pectinolytic enzymes / D. Sharma, R. Nagpal, S. Agrawal [et al.] // Applied Biochemistry and Biotechnoljgy. – Vol. 194. – P. 620–634. – DOI:https://doi.org/10.1007/s12010-021-03641-6

124. Bentil, J. A. Biocatalytic potential of basidiomycetes: relevance, challenges and research interventions in industrial processes / J. A. Bentil // Scientific African. – 2021. – Vol. 11. – P. e00717. – DOI:https://doi.org/10.1016/j.sciaf.2021.e00717

125. Metreveli, E. The carbon source controls the secretion and yield of polysaccharide-hydrolyzing enzymes of basidiomycetes / E. Metreveli, T. Khardziani, V. Elisashvili // Biomolecules. – 2021. – Vol. 11, № 9. – P. 1341. – DOI:https://doi.org/10.3390/biom11091341

126. Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes / P. de Oliveira Rodrigues, L. V. A. Gurgel, D. Pasquini [et al.] // Renewable Energy. – 2020. – Vol. 145. – P. 2683–2693. – DOI:https://doi.org/10.1016/j.renene.2019.08.041

127. Vetchinkina, E. P. Comparative characteristics of mycelial mats of xylotrophic basidiomycetes / E. P. Vetchinkina // Mycological Progress. – 2025. – Vol. 24. – P. 47. – DOI:https://doi.org/10.1007/s11557-025-02068-1

128. Valorization of lignocellulosic wastes for extracellular enzyme production by novel Basidiomycetes: screening, hydrolysis, and bioethanol production / N. Ilić, S. Davidović, M. Milić [et al.] // Biomass Conversion and Biorefinery. – 2023. – Vol. 13. – P. 17175–17186. – DOI:https://doi.org/10.1007/s13399-021-02145-x

129. Rice straw fermentation by Schizophyllum commune ARC-11 to produce high level of xylanase for its application in pre-bleaching / A. Gautam, A. Kumar, A. K. Bharti [et al.] // Journal of Genetic Engineering and Biotechnology. – 2018. – Vol. 16, № 2. – P. 693–701. – DOI:https://doi.org/10.1016/j.jgeb.2018.02.006

130. Shradhdha, S. Production of lignolytic and cellulolytic enzymes by using basidiomycetes fungi in the solid-state fermentation of different agro-residues / S. Shradhdha, D. S. Murty // Research Journal of Biotechnology. – 2020. – Vol. 15, № 9. – P. 10–17.

131. Sequential production of ligninolytic, xylanolytic, and cellulolytic enzymes by Trametes hirsuta AA-017 under different biomass of Indonesian sorghum accessions-induced cultures / A. Andriani, A. Maharani, D. H. Y. Yanto [et al.] // Bioresource Technology Reports. – 2020. – Vol. 12. – P. 100562. – DOI:https://doi.org/10.1016/j.biteb.2020.100562

132. Martynov, V. V. Perspektivy biotekhnologicheskoj utilizacii korodrevesnyh othodov dlitel’nogo sroka hraneniya na osnove mikodestrukcii [Potential of utilizing aged bark-and-wood waste through mycological degradation as a biotechnological process] / V. V. Martynov, T. N. Shchemelinina, E. M. Anchugova // Povolzhskij ekologicheskij zhurnal [Povolzhskiy Journal of Ecology]. – 2024. – № 4. – P. 500–508. – DOI:https://doi.org/10.35885/1684-7318-2024-4-500-508

133. Martynov, V. V. Valorizaciya lignocellyuloznogo othoda – kofejnoj sheluhi [Coffee silverskin valorization] / V. V. Martynov, T. N. Shchemelinina, E. M. Anchugova // Proceedings of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences. – 2024. – № 9 (75). – P. 75–79. – DOI:https://doi.org/10.19110/1994-5655-2024-9-75-79

Login or Create
* Forgot password?